
GASP, an assembly preprocessor
for GASP version 1

March 1994

Roland Pesch

Cygnus Support

Copyright c© 1994, 1995, 2000 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free
Documentation License".

Chapter 1: What is GASP? 1

1 What is GASP?

The primary purpose of the gnu assembler is to assemble the output of other programs—
notably compilers. When you have to hand-code specialized routines in assembly, that
means the gnu assembler is an unfriendly processor: it has no directives for macros, condi-
tionals, or many other conveniences that you might expect.

In some cases you can simply use the C preprocessor, or a generalized preprocessor like
m4; but this can be awkward, since none of these things are designed with assembly in
mind.

gasp fills this need. It is expressly designed to provide the facilities you need with hand-
coded assembly code. Implementing it as a preprocessor, rather than part of the assembler,
allows the maximum flexibility: you can use it with hand-coded assembly, without paying
a penalty of added complexity in the assembler you use for compiler output.

Here is a small example to give the flavor of gasp. This input to gasp
® ©

.MACRO saveregs from=8 to=14
count .ASSIGNA \from

! save r\from..r\to
.AWHILE \&count LE \to
mov r\&count,@-sp

count .ASSIGNA \&count + 1
.AENDW
.ENDM

saveregs from=12

bar: mov #H’dead+10,r0
foo .SDATAC "hello"<10>

.END
 ª
generates this assembly program:
® ©

! save r12..r14
mov r12,@-sp
mov r13,@-sp
mov r14,@-sp

bar: mov #57005+10,r0
foo: .byte 6,104,101,108,108,111,10

 ª

2 GASP

Chapter 2: Command Line Options 3

2 Command Line Options

The simplest way to use gasp is to run it as a filter and assemble its output. In Unix
and its ilk, you can do this, for example:

$ gasp prog.asm | as -o prog.o

Naturally, there are also a few command-line options to allow you to request variations
on this basic theme. Here is the full set of possibilities for the gasp command line.

gasp [-a | --alternate]
[-c char | --commentchar char]
[-d | --debug] [-h | --help] [-M | --mri]
[-o outfile | --output outfile]
[-p | --print] [-s | --copysource]
[-u | --unreasonable] [-v | --version]
infile ...

infile ... The input file names. You must specify at least one input file; if you specify
more, gasp preprocesses them all, concatenating the output in the order you
list the infile arguments.
Mark the end of each input file with the preprocessor command .END. See
Section 3.7 [Miscellaneous commands], page 12.

-a
--alternate

Use alternative macro syntax. See Section 3.9 [Alternate macro syntax],
page 15, for a discussion of how this syntax differs from the default gasp
syntax.

-c ’char’
--commentchar ’char’

Use char as the comment character. The default comment character is ‘!’. For
example, to use a semicolon as the comment character, specify ‘-c ’;’’ on the
gasp command line. Since assembler command characters often have special
significance to command shells, it is a good idea to quote or escape char when
you specify a comment character.
For the sake of simplicity, all examples in this manual use the default comment
character ‘!’.

-d
--debug Show debugging statistics. In this version of gasp, this option produces statis-

tics about the string buffers that gasp allocates internally. For each defined
buffersize s, gasp shows the number of strings n that it allocated, with a line
like this:

strings size s : n

gasp displays these statistics on the standard error stream, when done prepro-
cessing.

-h
--help Display a summary of the gasp command line options.

4 GASP

-M
--mri Use MRI compatibility mode. Using this option causes gasp to accept the

syntax and pseudo-ops used by the Microtec Research ASM68K assembler.

-o outfile
--output outfile

Write the output in a file called outfile. If you do not use the ‘-o’ option, gasp
writes its output on the standard output stream.

-p
--print Print line numbers. gasp obeys this option only if you also specify ‘-s’ to copy

source lines to its output. With ‘-s -p’, gasp displays the line number of each
source line copied (immediately after the comment character at the beginning
of the line).

-s
--copysource

Copy the source lines to the output file. Use this option to see the effect of
each preprocessor line on the gasp output. gasp places a comment character
(‘!’ by default) at the beginning of each source line it copies, so that you can
use this option and still assemble the result.

-u
--unreasonable

Bypass “unreasonable expansion” limit. Since you can define gasp macros in-
side other macro definitions, the preprocessor normally includes a sanity check.
If your program requires more than 1,000 nested expansions, gasp normally
exits with an error message. Use this option to turn off this check, allowing
unlimited nested expansions.

-v
--version

Display the gasp version number.

Chapter 3: Preprocessor Commands 5

3 Preprocessor Commands

gasp commands have a straightforward syntax that fits in well with assembly conven-
tions. In general, a command extends for a line, and may have up to three fields: an
optional label, the command itself, and optional arguments to the command. You can
write commands in upper or lower case, though this manual shows them in upper case. See
Section 3.8 [Details of the GASP syntax], page 13, for more information.

3.1 Conditional assembly

The conditional-assembly directives allow you to include or exclude portions of an as-
sembly depending on how a pair of expressions, or a pair of strings, compare.

The overall structure of conditionals is familiar from many other contexts. .AIF marks
the start of a conditional, and precedes assembly for the case when the condition is true.
An optional .AELSE precedes assembly for the converse case, and an .AENDI marks the end
of the condition.

You may nest conditionals up to a depth of 100; gasp rejects nesting beyond that,
because it may indicate a bug in your macro structure.

Conditionals are primarily useful inside macro definitions, where you often need different
effects depending on argument values. See Section 3.4 [Defining your own directives], page 8,
for details about defining macros.

.AIF expra cmp exprb

.AIF "stra" cmp "strb"
The governing condition goes on the same line as the .AIF preprocessor com-
mand. You may compare either two strings, or two expressions.
When you compare strings, only two conditional cmp comparison operators are
available: ‘EQ’ (true if stra and strb are identical), and ‘NE’ (the opposite).
When you compare two expressions, both expressions must be absolute (see
Section 3.8.4 [Arithmetic expressions in GASP], page 14). You can use these
cmp comparison operators with expressions:

EQ Are expra and exprb equal? (For strings, are stra and strb identi-
cal?)

NE Are expra and exprb different? (For strings, are stra and strb
different?

LT Is expra less than exprb? (Not allowed for strings.)

LE Is expra less than or equal to exprb? (Not allowed for strings.)

GT Is expra greater than exprb? (Not allowed for strings.)

GE Is expra greater than or equal to exprb? (Not allowed for strings.)

.AELSE Marks the start of assembly code to be included if the condition fails. Optional,
and only allowed within a conditional (between .AIF and .AENDI).

.AENDI Marks the end of a conditional assembly.

6 GASP

3.2 Repetitive sections of assembly

Two preprocessor directives allow you to repeatedly issue copies of the same block of
assembly code.

.AREPEAT aexp

.AENDR If you simply need to repeat the same block of assembly over and over a fixed
number of times, sandwich one instance of the repeated block between .AREPEAT
and .AENDR. Specify the number of copies as aexp (which must be an absolute
expression). For example, this repeats two assembly statements three times in
succession:® ©

.AREPEAT 3
rotcl r2
div1 r0,r1
.AENDR

 ª

.AWHILE expra cmp exprb

.AENDW

.AWHILE stra cmp strb

.AENDW To repeat a block of assembly depending on a conditional test, rather than
repeating it for a specific number of times, use .AWHILE. .AENDW marks the end
of the repeated block. The conditional comparison works exactly the same way
as for .AIF, with the same comparison operators (see Section 3.1 [Conditional
assembly], page 5).
Since the terms of the comparison must be absolute expression, .AWHILE is
primarily useful within macros. See Section 3.4 [Defining your own directives],
page 8.

You can use the .EXITM preprocessor directive to break out of loops early (as well as to
break out of macros). See Section 3.4 [Defining your own directives], page 8.

3.3 Preprocessor variables

You can use variables in gasp to represent strings, registers, or the results of expressions.

You must distinguish two kinds of variables:

1. Variables defined with .EQU or .ASSIGN. To evaluate this kind of variable in your
assembly output, simply mention its name. For example, these two lines define and
use a variable ‘eg’:
® ©
eg .EQU FLIP-64

...
mov.l eg,r0

 ª
Do not use this kind of variable in conditional expressions or while loops; gasp only
evaluates these variables when writing assembly output.

Chapter 3: Preprocessor Commands 7

2. Variables for use during preprocessing. You can define these with .ASSIGNC or
.ASSIGNA. To evaluate this kind of variable, write ‘\&’ before the variable name; for
example,
® ©
opcit .ASSIGNA 47

...

.AWHILE \&opcit GT 0

...

.AENDW
 ª
gasp treats macro arguments almost the same way, but to evaluate them you use the
prefix ‘\’ rather than ‘\&’. See Section 3.4 [Defining your own directives], page 8.

pvar .EQU expr
Assign preprocessor variable pvar the value of the expression expr. There are
no restrictions on redefinition; use ‘.EQU’ with the same pvar as often as you
find it convenient.

pvar .ASSIGN expr
Almost the same as .EQU, save that you may not redefine pvar using .ASSIGN
once it has a value.

pvar .ASSIGNA aexpr
Define a variable with a numeric value, for use during preprocessing. aexpr
must be an absolute expression. You can redefine variables with .ASSIGNA at
any time.

pvar .ASSIGNC "str"
Define a variable with a string value, for use during preprocessing. You can
redefine variables with .ASSIGNC at any time.

pvar .REG (register)
Use .REG to define a variable that represents a register. In particular, register
is not evaluated as an expression. You may use .REG at will to redefine register
variables.

All these directives accept the variable name in the “label” position, that is at the left
margin. You may specify a colon after the variable name if you wish; the first example
above could have started ‘eg:’ with the same effect.

8 GASP

3.4 Defining your own directives

The commands .MACRO and .ENDM allow you to define macros that generate assembly
output. You can use these macros with a syntax similar to built-in gasp or assembler
directives. For example, this definition specifies a macro SUM that adds together a range of
consecutive registers:
® ©

.MACRO SUM FROM=0, TO=9
! \FROM \TO
mov r\FROM,r10

COUNT .ASSIGNA \FROM+1
.AWHILE \&COUNT LE \TO
add r\&COUNT,r10

COUNT .ASSIGNA \&COUNT+1
.AENDW
.ENDM

 ª
With that definition, ‘SUM 0,5’ generates this assembly output:
® ©

! 0 5
mov r0,r10
add r1,r10
add r2,r10
add r3,r10
add r4,r10
add r5,r10

 ª

.MACRO macname

.MACRO macname macargs ...
Begin the definition of a macro called macname. If your macro definition re-
quires arguments, specify their names after the macro name, separated by com-
mas or spaces. You can supply a default value for any macro argument by
following the name with ‘=deflt’. For example, these are all valid .MACRO state-
ments:

.MACRO COMM
Begin the definition of a macro called COMM, which takes no argu-
ments.

.MACRO PLUS1 P, P1

.MACRO PLUS1 P P1
Either statement begins the definition of a macro called PLUS1,
which takes two arguments; within the macro definition, write ‘\P’
or ‘\P1’ to evaluate the arguments.

.MACRO RESERVE_STR P1=0 P2
Begin the definition of a macro called RESERVE_STR, with two argu-
ments. The first argument has a default value, but not the second.
After the definition is complete, you can call the macro either as

Chapter 3: Preprocessor Commands 9

‘RESERVE_STR a,b’ (with ‘\P1’ evaluating to a and ‘\P2’ evaluating
to b), or as ‘RESERVE_STR ,b’ (with ‘\P1’ evaluating as the default,
in this case ‘0’, and ‘\P2’ evaluating to b).

When you call a macro, you can specify the argument values either by position,
or by keyword. For example, ‘SUM 9,17’ is equivalent to ‘SUM TO=17, FROM=9’.
Macro arguments are preprocessor variables similar to the variables you define
with ‘.ASSIGNA’ or ‘.ASSIGNC’; in particular, you can use them in conditionals
or for loop control. (The only difference is the prefix you write to evaluate
the variable: for a macro argument, write ‘\argname’, but for a preprocessor
variable, write ‘\&varname’.)

name .MACRO
name .MACRO (macargs ...)

An alternative form of introducing a macro definition: specify the macro name
in the label position, and the arguments (if any) between parentheses after the
name. Defaulting rules and usage work the same way as for the other macro
definition syntax.

.ENDM Mark the end of a macro definition.

.EXITM Exit early from the current macro definition, .AREPEAT loop, or .AWHILE loop.

\@ gasp maintains a counter of how many macros it has executed in this pseudo-
variable; you can copy that number to your output with ‘\@’, but only within
a macro definition.

LOCAL name [, ...]
Warning: LOCAL is only available if you select “alternate macro syntax” with
‘-a’ or ‘--alternate’. See Section 3.9 [Alternate macro syntax], page 15.

Generate a string replacement for each of the name arguments, and replace
any instances of name in each macro expansion. The replacement string is
unique in the assembly, and different for each separate macro expansion. LOCAL
allows you to write macros that define symbols, without fear of conflict between
separate macro expansions.

3.5 Data output

In assembly code, you often need to specify working areas of memory; depending on the
application, you may want to initialize such memory or not. gasp provides preprocessor
directives to help you avoid repetitive coding for both purposes.

You can use labels as usual to mark the data areas.

3.5.1 Initialized data

These are the gasp directives for initialized data, and the standard gnu assembler
directives they expand to:

10 GASP

.DATA expr, expr, ...

.DATA.B expr, expr, ...

.DATA.W expr, expr, ...

.DATA.L expr, expr, ...
Evaluate arithmetic expressions expr, and emit the corresponding as direc-
tive (labelled with lab). The unqualified .DATA emits ‘.long’; .DATA.B emits
‘.byte’; .DATA.W emits ‘.short’; and .DATA.L emits ‘.long’.

For example, ‘foo .DATA 1,2,3’ emits ‘foo: .long 1,2,3’.

.DATAB repeat, expr

.DATAB.B repeat, expr

.DATAB.W repeat, expr

.DATAB.L repeat, expr
Make as emit repeat copies of the value of the expression expr (using the as
directive .fill). ‘.DATAB.B’ repeats one-byte values; ‘.DATAB.W’ repeats two-
byte values; and ‘.DATAB.L’ repeats four-byte values. ‘.DATAB’ without a suffix
repeats four-byte values, just like ‘.DATAB.L’.

repeat must be an absolute expression with a positive value.

.SDATA "str" ...
String data. Emits a concatenation of bytes, precisely as you specify them (in
particular, nothing is added to mark the end of the string). See Section 3.8.2
[String and numeric constants], page 14, for details about how to write strings.
.SDATA concatenates multiple arguments, making it easy to switch between
string representations. You can use commas to separate the individual argu-
ments for clarity, if you choose.

.SDATAB repeat, "str" ...
Repeated string data. The first argument specifies how many copies of the
string to emit; the remaining arguments specify the string, in the same way as
the arguments to .SDATA.

.SDATAZ "str" ...
Zero-terminated string data. Just like .SDATA, except that .SDATAZ writes a
zero byte at the end of the string.

.SDATAC "str" ...
Count-prefixed string data. Just like .SDATA, except that gasp precedes the
string with a leading one-byte count. For example, ‘.SDATAC "HI"’ generates
‘.byte 2,72,73’. Since the count field is only one byte, you can only use
.SDATAC for strings less than 256 bytes in length.

3.5.2 Uninitialized data

Use the .RES, .SRES, .SRESC, and .SRESZ directives to reserve memory and leave it
uninitialized. gasp resolves these directives to appropriate calls of the gnu as .space
directive.

Chapter 3: Preprocessor Commands 11

.RES count

.RES.B count

.RES.W count

.RES.L count
Reserve room for count uninitialized elements of data. The suffix specifies the
size of each element: .RES.B reserves count bytes, .RES.W reserves count pairs
of bytes, and .RES.L reserves count quartets. .RES without a suffix is equivalent
to .RES.L.

.SRES count

.SRES.B count

.SRES.W count

.SRES.L count
.SRES is a synonym for ‘.RES’.

.SRESC count

.SRESC.B count

.SRESC.W count

.SRESC.L count
Like .SRES, but reserves space for count+1 elements.

.SRESZ count

.SRESZ.B count

.SRESZ.W count

.SRESZ.L count
Like .SRES, but reserves space for count+1 elements.

3.6 Assembly listing control

The gasp listing-control directives correspond to related gnu as directives.

.PRINT LIST

.PRINT NOLIST
Print control. This directive emits the gnu as directive .list or .nolist,
according to its argument. See section “.list” in Using as, for details on how
these directives interact.

.FORM LIN=ln

.FORM COL=cols

.FORM LIN=ln COL=cols
Specify the page size for assembly listings: ln represents the number of lines,
and cols the number of columns. You may specify either page dimension inde-
pendently, or both together. If you do not specify the number of lines, gasp
assumes 60 lines; if you do not specify the number of columns, gasp assumes
132 columns. (Any values you may have specified in previous instances of .FORM
do not carry over as defaults.) Emits the .psize assembler directive.

.HEADING string
Specify string as the title of your assembly listings. Emits ‘.title "string"’.

12 GASP

.PAGE Force a new page in assembly listings. Emits ‘.eject’.

3.7 Miscellaneous commands

.ALTERNATE
Use the alternate macro syntax henceforth in the assembly. See Section 3.9
[Alternate macro syntax], page 15.

.ORG This command is recognized, but not yet implemented. gasp generates an error
message for programs that use .ORG.

.RADIX s gasp understands numbers in any of base two, eight, ten, or sixteen. You can
encode the base explicitly in any numeric constant (see Section 3.8.2 [String
and numeric constants], page 14). If you write numbers without an explicit
indication of the base, the most recent ‘.RADIX s’ command determines how
they are interpreted. s is a single letter, one of the following:

.RADIX B Base 2.

.RADIX Q Base 8.

.RADIX D Base 10. This is the original default radix.

.RADIX H Base 16.

You may specify the argument s in lower case (any of ‘bqdh’) with the same
effects.

.EXPORT name

.GLOBAL name
Declare name global (emits ‘.global name’). The two directives are synony-
mous.

.PROGRAM No effect: gasp accepts this directive, and silently ignores it.

.END Mark end of each preprocessor file. gasp issues a warning if it reaches end of
file without seeing this command.

.INCLUDE "str"
Preprocess the file named by str, as if its contents appeared where the .INCLUDE
directive does. gasp imposes a maximum limit of 30 stacked include files, as a
sanity check.

.ALIGN size
Evaluate the absolute expression size, and emit the assembly instruction
‘.align size’ using the result.

Chapter 3: Preprocessor Commands 13

3.8 Details of the GASP syntax

Since gasp is meant to work with assembly code, its statement syntax has no surprises
for the assembly programmer.

Whitespace (blanks or tabs; not newline) is partially significant, in that it delimits up
to three fields in a line. The amount of whitespace does not matter; you may line up fields
in separate lines if you wish, but gasp does not require that.

The first field, an optional label, must be flush left in a line (with no leading whitespace)
if it appears at all. You may use a colon after the label if you wish; gasp neither requires
the colon nor objects to it (but will not include it as part of the label name).

The second field, which must appear after some whitespace, contains a gasp or assembly
directive.

Any further fields on a line are arguments to the directive; you can separate them from
one another using either commas or whitespace.

3.8.1 Special syntactic markers

gasp recognizes a few special markers: to delimit comments, to continue a statement on
the next line, to separate symbols from other characters, and to copy text to the output lit-
erally. (One other special marker, ‘\@’, works only within macro definitions; see Section 3.4
[Defining your own directives], page 8.)

The trailing part of any gasp source line may be a comment. A comment begins with
the first unquoted comment character (‘!’ by default), or an escaped or doubled comment
character (‘\!’ or ‘!!’ by default), and extends to the end of a line. You can specify what
comment character to use with the ‘-c’ option (see Chapter 2 [Command Line Options],
page 3). The two kinds of comment markers lead to slightly different treatment:

! A single, un-escaped comment character generates an assembly comment in the
gasp output. gasp evaluates any preprocessor variables (macro arguments, or
variables defined with .ASSIGNA or .ASSIGNC) present. For example, a macro
that begins like this

.MACRO SUM FROM=0, TO=9
! \FROM \TO

issues as the first line of output a comment that records the values you used to
call the macro.

\!
!! Either an escaped comment character, or a double comment character, marks

a gasp source comment. gasp does not copy such comments to the assembly
output.

To continue a statement on the next line of the file, begin the second line with the
character ‘+’.

Occasionally you may want to prevent gasp from preprocessing some particular bit of
text. To copy literally from the gasp source to its output, place ‘\(’ before the string to
copy, and ‘)’ at the end. For example, write ‘\(\!)’ if you need the characters ‘\!’ in your
assembly output.

14 GASP

To separate a preprocessor variable from text to appear immediately after its value, write
a single quote (’). For example, ‘.SDATA "\P’1"’ writes a string built by concatenating the
value of P and the digit ‘1’. (You cannot achieve this by writing just ‘\P1’, since ‘P1’ is
itself a valid name for a preprocessor variable.)

3.8.2 String and numeric constants

There are two ways of writing string constants in gasp: as literal text, and by numeric
byte value. Specify a string literal between double quotes ("str"). Specify an individual
numeric byte value as an absolute expression between angle brackets (<expr>. Directives
that output strings allow you to specify any number of either kind of value, in whatever order
is convenient, and concatenate the result. (Alternate syntax mode introduces a number of
alternative string notations; see Section 3.9 [Alternate macro syntax], page 15.)

You can write numeric constants either in a specific base, or in whatever base is currently
selected (either 10, or selected by the most recent .RADIX).

To write a number in a specific base, use the pattern s’ddd: a base specifier character
s, followed by a single quote followed by digits ddd. The base specifier character matches
those you can specify with .RADIX: ‘B’ for base 2, ‘Q’ for base 8, ‘D’ for base 10, and ‘H’ for
base 16. (You can write this character in lower case if you prefer.)

3.8.3 Symbols

gasp recognizes symbol names that start with any alphabetic character, ‘_’, or ‘$’, and
continue with any of the same characters or with digits. Label names follow the same rules.

3.8.4 Arithmetic expressions in GASP

There are two kinds of expressions, depending on their result: absolute expressions,
which resolve to a constant (that is, they do not involve any values unknown to gasp), and
relocatable expressions, which must reduce to the form

addsym+const-subsym

where addsym and subsym are assembly symbols of unknown value, and const is a constant.

Arithmetic for gasp expressions follows very similar rules to C. You can use parentheses
to change precedence; otherwise, arithmetic primitives have decreasing precedence in the
order of the following list.

1. Single-argument + (identity), - (arithmetic opposite), or ~ (bitwise negation). The
argument must be an absolute expression.

2. * (multiplication) and / (division). Both arguments must be absolute expressions.

3. + (addition) and - (subtraction). At least one argument must be absolute.

4. & (bitwise and). Both arguments must be absolute.

5. | (bitwise or) and ~ (bitwise exclusive or; ^ in C). Both arguments must be absolute.

Chapter 3: Preprocessor Commands 15

3.8.5 String primitives

You can use these primitives to manipulate strings (in the argument field of gasp state-
ments):

.LEN("str")
Calculate the length of string "str", as an absolute expression. For example,
‘.RES.B .LEN("sample")’ reserves six bytes of memory.

.INSTR("string", "seg", ix)
Search for the first occurrence of seg after position ix of string. For example,
‘.INSTR("ABCDEFG", "CDE", 0)’ evaluates to the absolute result 2.
The result is -1 if seg does not occur in string after position ix.

.SUBSTR("string",start,len)
The substring of string beginning at byte number start and extending for len
bytes.

3.9 Alternate macro syntax

If you specify ‘-a’ or ‘--alternate’ on the gasp command line, the preprocessor uses
somewhat different syntax. This syntax is reminiscent of the syntax of Phar Lap macro
assembler, but it is not meant to be a full emulation of Phar Lap or similar assemblers. In
particular, gasp does not support directives such as DB and IRP, even in alternate syntax
mode.

In particular, ‘-a’ (or ‘--alternate’) elicits these differences:

Preprocessor directives
You can use gasp preprocessor directives without a leading ‘.’ dot. For exam-
ple, you can write ‘SDATA’ with the same effect as ‘.SDATA’.

LOCAL One additional directive, LOCAL, is available. See Section 3.4 [Defining your
own directives], page 8, for an explanation of how to use LOCAL.

String delimiters
You can write strings delimited in these other ways besides "string":

’string’ You can delimit strings with single-quote charaters.

<string> You can delimit strings with matching angle brackets.

single-character string escape
To include any single character literally in a string (even if the character would
otherwise have some special meaning), you can prefix the character with ‘!’ (an
exclamation mark). For example, you can write ‘<4.3 !> 5.4!!>’ to get the
literal text ‘4.3 > 5.4!’.

Expression results as strings
You can write ‘%expr’ to evaluate the expression expr and use the result as a
string.

16 GASP

Chapter 4: GNU Free Documentation License 17

4 GNU Free Documentation License

GNU Free Documentation License
Version 1.1, March 2000
Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston,

MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document,

but changing it is not allowed.
0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written docu-

ment "free" in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Sec-
ondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by

the copyright holder saying it can be distributed under the terms of this License. The
"Document", below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A "Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to
the Document’s overall subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (For example, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under this
License.

18 GASP

A "Transparent" copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage subsequent modification
by readers is not Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modification.
Opaque formats include PostScript, PDF, proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or

noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you distribute
a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the Doc-

ument’s license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and
Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you
as the publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque

Chapter 4: GNU Free Documentation License 19

copy, or state in or with each Opaque copy a publicly-accessible computer-network location
containing a complete Transparent copy of the Document, free of added material, which
the general network-using public has access to download anonymously at no charge using
public-standard network protocols. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you with
an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions

of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be listed
in the History section of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission. B. List on the Title Page, as
authors, one or more persons or entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the principal authors of the Document
(all of its principal authors, if it has less than five). C. State on the Title page the name
of the publisher of the Modified Version, as the publisher. D. Preserve all the copyright
notices of the Document. E. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices. F. Include, immediately after the copyright notices,
a license notice giving the public permission to use the Modified Version under the terms
of this License, in the form shown in the Addendum below. G. Preserve in that license
notice the full lists of Invariant Sections and required Cover Texts given in the Document’s
license notice. H. Include an unaltered copy of this License. I. Preserve the section entitled
"History", and its title, and add to it an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on the Title Page. If there is no section
entitled "History" in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence. J. Preserve the network location, if any, given
in the Document for public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions it was based on. These
may be placed in the "History" section. You may omit a network location for a work that
was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission. K. In any section entitled "Acknowledgements"
or "Dedications", preserve the section’s title, and preserve in the section all the substance
and tone of each of the contributor acknowledgements and/or dedications given therein. L.
Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles. M.
Delete any section entitled "Endorsements". Such a section may not be included in the

20 GASP

Modified Version. N. Do not retitle any existing section as "Endorsements" or to conflict
in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but en-
dorsements of your Modified Version by various parties–for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you include
in the combination all of the Invariant Sections of all of the original documents, unmodified,
and list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various
original documents, forming one section entitled "History"; likewise combine any sections
entitled "Acknowledgements", and any sections entitled "Dedications". You must delete
all sections entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various documents
with a single copy that is included in the collection, provided that you follow the rules of
this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

Chapter 4: GNU Free Documentation License 21

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not as a
whole count as a Modified Version of the Document, provided no compilation copyright is
claimed for the compilation. Such a compilation is called an "aggregate", and this License
does not apply to the other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s Cover
Texts may be placed on covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License provided that you also include the original
English version of this License. In case of a disagreement between the translation and the
original English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;

22 GASP

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying
which ones are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts"
instead of "Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index 23

Index

!
! default comment char . 3

-
--alternate . 3
--commentchar ’char’ . 3
--copysource . 4
--debug . 3
--help . 3
--mri . 4
--output outfile . 4
--print . 4
--unreasonable . 4
--version. 4
-a . 3
-c ’char’ . 3
-d . 3
-h . 3
-M . 4
-o outfile . 4
-p . 4
-s . 4
-u . 4
-v . 4

.

.AELSE . 5

.AENDI . 5

.AENDR . 6

.AENDW . 6

.AIF "stra" cmp "strb" . 5

.AIF expra cmp exprb . 5

.ALIGN size . 12

.ALTERNATE . 12

.AREPEAT aexp . 6

.AWHILE expra cmp exprb . 6

.AWHILE stra cmp strb . 6

.DATA expr, expr, ... 10

.DATA.B expr, expr, ... 10

.DATA.L expr, expr, ... 10

.DATA.W expr, expr, ... 10

.DATAB repeat, expr . 10

.DATAB.B repeat, expr . 10

.DATAB.L repeat, expr . 10

.DATAB.W repeat, expr . 10

.END . 12

.ENDM . 9

.EXITM . 9

.EXPORT name . 12

.FORM COL=cols . 11

.FORM LIN=ln . 11

.FORM LIN=ln COL=cols . 11

.GLOBAL name . 12

.HEADING string . 11

.INCLUDE "str" . 12

.INSTR("string", "seg", ix) 15

.LEN("str") . 15

.MACRO macname . 8

.MACRO macname macargs 8

.ORG . 12

.PAGE . 12

.PRINT LIST . 11

.PRINT NOLIST. 11

.PROGRAM . 12

.RADIX s . 12

.RES count . 11

.RES.B count . 11

.RES.L count . 11

.RES.W count . 11

.SDATA "str" ... 10

.SDATAB repeat, "str" ... 10

.SDATAC "str" ... 10

.SDATAZ "str" ... 10

.SRES count . 11

.SRES.B count . 11

.SRES.L count . 11

.SRES.W count . 11

.SRESC count . 11

.SRESC.B count . 11

.SRESC.L count . 11

.SRESC.W count . 11

.SRESZ count . 11

.SRESZ.B count . 11

.SRESZ.L count . 11

.SRESZ.W count . 11

.SUBSTR("string",start,len) 15

;
; as comment char . 3

+
+ . 13

\
\@ . 9

24 GASP

A
absolute expressions. 14

argument fields . 13

avoiding preprocessing . 13

B
bang, as comment . 3

breaking out of loops . 6

C
comment character, changing 3

comments . 13

continuation character . 13

copying literally to output . 13

D
directive field . 13

E
EQ . 5

exclamation mark, as comment 3

F
fields of gasp source line . 13

G
GE . 5

GT . 5

I
infile ... 3

L
label field . 13
LE . 5
literal copy to output . 13
LOCAL name [, ...] . 9
loops, breaking out of . 6
LT . 5

M
macros, count executed . 9

N
name .MACRO . 9
name .MACRO (macargs ...) 9
NE . 5
number of macros executed . 9

P
preprocessing, avoiding . 13
pvar .ASSIGN expr . 7
pvar .ASSIGNA aexpr . 7
pvar .ASSIGNC "str" . 7
pvar .EQU expr . 7
pvar .REG (register) . 7

R
relocatable expressions . 14

S
semicolon, as comment . 3
shriek, as comment . 3
symbol separator . 13
symbols, separating from text 13

T
text, separating from symbols 13

W
whitespace . 13

i

Table of Contents

1 What is GASP? . 1

2 Command Line Options . 3

3 Preprocessor Commands 5
3.1 Conditional assembly . 5
3.2 Repetitive sections of assembly . 6
3.3 Preprocessor variables . 6
3.4 Defining your own directives . 8
3.5 Data output . 9

3.5.1 Initialized data . 9
3.5.2 Uninitialized data . 10

3.6 Assembly listing control . 11
3.7 Miscellaneous commands. 12
3.8 Details of the GASP syntax . 13

3.8.1 Special syntactic markers . 13
3.8.2 String and numeric constants 14
3.8.3 Symbols . 14
3.8.4 Arithmetic expressions in GASP 14
3.8.5 String primitives. 15

3.9 Alternate macro syntax . 15

4 GNU Free Documentation License 17

Index . 23

ii GASP

