Participating in gawk Development

Edition 0.7
April, 2017

Arnold D. Robbins

Published by:

Free Software Foundation

51 Franklin Street, Fifth Floor
Boston, MA 02110-1301 USA
Phone: +1-617-542-5942

Fax: +1-617-542-2652

Email: gnu@gnu.org

URL: http://wuw.gnu.org/

Copyright (©) 2017 Free Software Foundation, Inc.

This is Edition 0.7 of Participating in gawk Development.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with the Invariant Sections being “GNU General Public
License”, with the Front-Cover Texts being “A GNU Manual”, and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

a. The FSF’s Back-Cover Text is: “You have the freedom to copy and modify this GNU
manual.”

mailto:gnu@gnu.org
http://www.gnu.org/

Table of Contents

Preface...... 1
Using This Book. 1
Typographical Conventions 1
Acknowledgments. 2
Notes to ReVIEWerst 2

1 How to Start Contributing 3

2 Using Git 4
2.1 The “Push/Pull” Model of Software Development 4
2.2 How Git Stores Branches and Their Copies 4
2.3 Local Branches......... ... o 6
2.4 Branches Represent Development State 7

2.4.1 Branches in the Savannah Repository 7
2.4.2 Branches in Your Local Repository......................... 7
2.4.3 A Closer Look at Branch Naming.......................... 8

3 Configuring Global Settings For Git........... 9

4 Development Without Commit Access....... 11
4.1 Cloning The Repo. ..o 11
4.2 Switching Branches........... ... o i 11
4.3 Starting A New Branch.......... 12
4.4 Undoing A Changecouiiiiiiiii i, 13
4.5 Updating and Merging...........ccooiiiiiiiiiiiiiiiiiiiia. 13

4.5.1 Rebasing A Local Branch.................... 13
4.5.2 Dealing With Merge Conflicts............. 13
4.6 Submitting Your Changes ..., 14
4.7 Removing Branches i 14
4.8 Points to Remember........ 15

5 Development With Commit Access........... 16
5.1 Imitial Setup.o 16
5.2 Cloning The Repo With An ssh URL.......................... 16
5.3 Developing Patches.......... ... i i 16
5.4 Developing New Features.............. 17
5.5 Developing Fixeso 17

6 General Development Practices............... 18

ii Participating in gawk Development

7 Keeping Your Repo Organized................ 20
8 Development Stuff............................. 22
8.1 Coding Style ... 22
8.2 Assigning Copyrights to the FSF 22
8.3 Software Tools You Will Need ...t 22
8.3.1 GNU TOO0IS. ... 22
8.3.2 Compilers . ..o 23

8.4 Compiling For Debugging. ... 24
Appendix A Git Command Cheat Sheet 25
Appendix B Git Resources...................... 27

Appendix C Stuff Still To Do In This Document .. 28

Preface 1

Preface

This booklet describes how to participate in development of GNU Awk (gawk). GNU Awk
is a Free Software project belonging to the Free Software Foundation’s GNU project.

The booklet focuses on participation in the project (that is, how to work most effectively
if you wish to contribute to it) and also describes how to make use of the Git distributed
source code management system for gawk development.

You should be comfortable working with traditional UNIX-style tools and with the C
language and standard library facilities.

Using This Book

This booklet has the following chapters and appendices:

e Chapter 1 [How to Start Contributing], page 3, describes how to start contributing to
the gawk project.

e Chapter 2 [Using Git], page 4, introduces the Git distributed source code management
system.

e Chapter 3 [Configuring Global Settings For Git], page 9, describes some initial set-up
you need to do before using Git seriously.

e Chapter 4 [Development Without Commit Access], page 11, gets into the meat of the
development workflow, describing how to work if you don’t have commit access to the
Savannah repository.

e Chapter 5 [Development With Commit Access|, page 16, continues the discussion,
covering what’s different when you can commit directly to the Savannah repository.

e Chapter 6 [General Development Practices|, page 18, describes general development

practices used by the gawk development team.

e Chapter 7 [Keeping Your Repo Organized|, page 20, presents several different things
you need to know about to keep your repo in good shape.

e Chapter 8 [Development Stuff], page 22, describes some important points you should
be familiar with in order to participate in gawk development and presents some tools
that may make your work easier.

e Appendix A [Git Command Cheat Sheet|, page 25, provides a short “cheat sheet”
summarizing all the Git commands referenced in this booklet.

e Appendix B [Git Resources|, page 27, provides a few pointers to Internet resources for
learning more about Git.

Typographical Conventions

This booklet is written in Texinfo, the GNU documentation formatting language. A single
Texinfo source file is used to produce both the printed and online versions of the documen-
tation. Because of this, the typographical conventions are slightly different than in other
books you may have read.

Examples you would type at the command line are preceded by the common shell primary
and secondary prompts, ‘¢’ and ‘>’. Input that you type is shown 1ike this. Output from
the command is preceded by the glyph “-”. This typically represents the command’s

http://git-scm.org
http://www.gnu.org/software/texinfo/

2 Participating in gawk Development

standard output. Error messages and other output on the command’s standard error are
preceded by the glyph ”. For example:

$ echo hi on stdout
- hi on stdout
$ echo hello on stderr 1>&2

hello on stderr

In the text, almost anything related to programming, such as command names, variable
and function names, and string, numeric and regexp constants appear in this font. Code
fragments appear in the same font and quoted, ‘1ike this’. Things that are replaced by the
user or programmer appear in this font. Options look like this: -f. File names are indicated
like this: /path/to/ourfile. Some things are emphasized like this, and if a point needs
to be made strongly, it is done like this. The first occurrence of a new term is usually its
definition and appears in the same font as the previous occurrence of “definition” in this
sentence.

Characters that you type at the keyboard look 1ike this. In particular, there are special
characters called “control characters.” These are characters that you type by holding down
both the CONTROL key and another key, at the same time. For example, a Ctrl-d is typed
by first pressing and holding the CONTROL key, next pressing the d key, and finally releasing
both keys.

NOTE: Notes of interest look like this.
CAUTION: Cautionary or warning notes look like this.

Acknowledgments
Thanks to Jiirgen Kahrs for his initial efforts to write a document like this. Although his
prose has not survived, his material was helpful in preparing this booklet.

Thanks to Yehezkel Bernat for reviewing this document and in general for his good
intentions.

FIXME: YOUR NAME HERE...

Notes to Reviewers

Please let me know if anything is missing, or unclear. Real errors with respect Git commands
and usage are very important as well.

Spelling errors and typo fixes welcome, but not as important.

Chapter 1: How to Start Contributing 3

1 How to Start Contributing

gawk development is distributed. It’s done using electronic mail (email) and via branches
in the Git repo’ on Savannah, the GNU project’s source code management site.

In this chapter we use some Git terminology. If you're not at all familiar with Git, then
skim this chapter and come back after reading the rest of the booklet.

gawk is similar to many other Free Software projects. To begin contributing, simply
start! Take a look at the TODO file in the distribution, see if there is something of interest
to you, and ask on the bug-gawk@gnu.org mailing list if anyone else is working on it. If
not, then go for it! (See Chapter 8 [Development Stuff], page 22, for a discussion of some
of the technical things you’ll need to do. Here we describe the process in general.)

Your contribution can be almost anything that is relevant for gawk, such as code fixes,
documentation fixes, and/or new features.

NOTE: If possible, new features should be done using gawk’s extension mecha-
nism. If you want to add a user-visible language change to the gawk core, you're
going to have to convince the maintainer and other developers that it’s really
worthwile to do so.

Changes that improve performance or portability, or that fix bugs, or that
enable more things in extensions, will require less convincing, of course.

As you complete a task, submit patches for review to the bug-gawk@gnu.org mailing
list, where you’ll be given feedback about your work. Once your changes are acceptable,
the maintainer will commit them to the Git repository.

Over time, as the maintainer and development team gain confidence in your ability to
contribute, you may be asked to join the private gawk developers’ mailing list, and/or be
granted commit access to the Git repository on Savannah. This has happened to more than
one person who just “came out of the woodwork.”

Until that happens, or if you don’t want to join the list, you should continue to work
with private branches and submission of patches to the mailing list.

Once you have commit access, if you want to make a major change or add a major
feature, where the patch(es) would be very large, it has become the practice to create a
separate branch, based off of master, to host the feature. This way the maintainer can
review it, and you can continue to improve it, until it’s ready for integration into master.

NOTE: Because of the GNU project’s requirements for signed paperwork for
contributions, the gawk project will not work with pull requests from GitHub
or any other Git-based software hosting service. You must submit patches to
the mailing list, and be willing to sign paperwork for large patches.

The bug-gawk@gnu.org mailing list is not private. Anyone may send mail to it, and
anyone may subscribe to it. To subscribe, go to the list’s web page and follow the instruc-
tions there. If you plan to be involved long-term with gawk development, then you probably
should subscribe to the list.

L Short for “repository”.

http://savannah.gnu.org
mailto:bug-gawk@gnu.org
mailto:bug-gawk@gnu.org
http://github.com
mailto:bug-gawk@gnu.org
https://lists.gnu.org/mailman/listinfo/bug-gawk

4 Participating in gawk Development

2 Using Git

This chapter provides an introduction to using Git. Our point is not to rave about how
wonderful Git is, nor to go into painful detail about how it works. Rather we want to give
you enough background to understand how to use Git effectively for bug fix and feature
development and to interact (“play nicely”) with the development team.

2.1 The “Push/Pull” Model of Software Development

Git is a powerful, distributed source code management system. However, the way it’s used
for gawk development purposely does not take advantage of all its features.

Instead, the model is rather simple, and in many ways much like more traditional dis-
tributed systems such as the Concurrent Versions System (CVS) or Subversion (SVN).

The central idea can be termed “push/pull.” You pull updates down from the central
repository to your local copy, and if you have commit rights, you push your changes or
updates up to the central repository.

Where Git does stand out is in its management of multiple branches of development.
Git makes it very easy to set up a separate branch for use in fixing a bug or developing
a feature. You can then easily keep that branch up to date with respect to the main
development branch(es), and eventually merge the changes from your branch into the main
branch.

Almost always Git does these merges for you without problem. When there is a problem
(a merge conflict), usually it is very easy for you to resolve them and then complete the
merge. We talk about this in more detail later (see Section 4.5.2 [Dealing With Merge
Conflicts|, page 13).

2.2 How Git Stores Branches and Their Copies

So how does Git work?!

A repository consists of a collection of branches. FEach branch represents the history
of a collection of files and directories (a file tree). Each combined set of changes to this
collection (files and directories added or deleted, and/or file contents changed) is termed a
commit.

When you first create a local copy of a remote repository (“clone the repo”), Git copies all
of the original repository’s branches to your local system. The original remote repository is
referred to as being upstream, and your local repo is downstream from it. Git distinguishes
branches from the upstream repo by prefixing their names with ‘origin/’. Let’s draw some
pictures. Figure 2.1 represents the state of the repo on Savannah:

! The following description is greatly simplified.

http://www.nongnu.org/cvs
http://subversion.apache.org

Chapter 2: Using Git 5

| Branches |
| master |
+-—- -—- -+
| gawk-4.1-stable |
o +
| gawk-4.0-stable |
T +

Figure 2.1: The Savannah gawk Repository

After you clone the repo, on your local system you will have a single branch named
master that’s visible when you use ‘git branch’ to see your branches.

$ git clone http://git.savannah.gnu.org/r/gawk.git Clone the repo

$ cd gawk Change to local copy

$ git branch See branch information
- * master

The current branch is always indicated with a leading asterisk (‘*’).

Pictorially, the local repo looks like Figure 2.2 (you can ignore the ‘T’ column for the
moment):

| T | Local Branches | Remote Branches |
| X | master || origin/master |
B T e +
| | || origin/gawk-4.1-stable I
R -— ++ ——————————— +
| | || origin/gawk-4.0-stable |
B e +
| | || origin/feature/fix-comments |
e e T +
| | . I
o b +

Figure 2.2: Your Local gawk Repository

Note that what is simply gawk-4.1-stable in the upstream repo is now referred to as
origin/gawk-4.1-stable. The ‘origin/’ branches are a snapshot of the state of the
upstream repo. This is how Git allows you to see what changes you've made with respect
to the upstream repo, without having to actually communicate with the upstream repo
over the Internet. (When files are identical, Git is smart enough to not have two separate
physical copies on your local disk.)

If you’re working on a simple bug fix or change, you can do so directly in your local
master branch. You can then commit your changes, and if you have access rights, push
them upstream to the Savannah repo. (However, there is a process to follow. Please read
the rest of this booklet.)

6 Participating in gawk Development

2.3 Local Branches

Let’s talk about local branches in more detail. (The terminology used here is my own, not
official Git jargon.) There are two kinds of local branches:

Tracking Branches

Tracking branches track branches from the upstream repository. You first create
a tracking branch simply by checking out a branch from the upstream. You
use the branch name without the leading ‘origin/’ prefix. For example, ‘git
checkout gawk-4.1-stable’.

You can then work on this branch, making commitments to it as you wish.
Once things are ready to move upstream, you simply use ‘git push’, and your
changes will be pushed up to the main repo.!

You should never checkout a branch using the ‘origin/’ prefix. Things will get
very confused. Always work on local tracking branches.

Purely Local Branches

A purely local branch exists only on your system. You may be developing some
large new feature, or fixing a very difficult bug, or have a change for which
paperwork has not yet been completed.

In such a case, you would keep your changes on a local branch, and periodically
synchronize it with master (or whichever upstream branch you started from).

This may seem somewhat abstract so far. We demonstrate with commands and branches
in Chapter 4 [Development Without Commit Access|, page 11, later in this booklet.

Let’s say you have checked out a copy of gawk-4.1-stable and have created a purely
local branch named better-random. Then our picture now looks like Figure 2.3, where the
‘T’ column indicates a tracking branch.

| T

Local Branches Il Remote Branches
| X | master || origin/master I
+———t -—- e e e e e +
| X | gawk-4.1-stable || origin/gawk-4.1-stable |
et S -—- e L R e R +
| I || origin/gawk-4.0-stable |
B B e e b +
| | || origin/feature/fix-comments |
to——t———— -— ++ —————————— +
| | . I
s T +
| | better-random | |
B T e +

Figure 2.3: Your Local gawk Repository With a Purely Local Branch

1 Assuming you have permission to do so, of course.

Chapter 2: Using Git 7

2.4 Branches Represent Development State

Branches represent development state. At any given time, when you checkout a particular
branch (or create a new one), you have a copy of the gawk source tree that you should be
able to build and test.

The following sections describe the different branches in the gawk repository and what
they are for, as well as how to use your own branches.

2.4.1 Branches in the Savannah Repository
There are several kinds of branches in the Savannah repository.

Dead Branches
Branches with the prefix ‘dead-branches/’ (such as dead-branches/const)
hold code that was never merged into the main code base. For example, a fea-
ture which was started, but later deemed to be unwise to add. These branches
keep the code available, but they are not updated.

Stable Branches
These branches are used for bug fixes to released versions of gawk. Sometimes
new development (i.e., user-visible changes) also occurs on these branches, al-
though in a perfect world they would be used only for bug fixes.

These branches have names like gawk-4.1-stable, gawk-4.0-stable, and so
on. Once a release has been made from master, the previous stable branch is
not updated. For example, once gawk 4.1.0 was released, no more work was
done on gawk-4.0-stable.

The Main Branch
This is the master branch. Here is where most new feature development takes
place, and releases of new major versions are based off of this branch.

Feature branches are typically based off this branch as well, and when the
feature is deemed complete, merged back into it.

Feature Branches
Often, a proposed new feature or code improvement is quite involved. It may
take some time to perfect, or the gawk development team may not be convinced
that the feature should be kept.
For this purpose, the team uses branches prefixed with ‘feature/’. This prefix
is used even for code that simply improves the internals and does not make a
user-visible change.
Having large changes on separate branches makes it easier for members of the
team to review the code, and also makes it easier to keep the changes up-to-date
with respect to master, since Git excels at merging commits from one branch
to another.

2.4.2 Branches in Your Local Repository

Purely local branches are where you do your own development. You may use purely local
branches because you don’t have commit rights to the Savannah repo. You may also use
them if you are doing some work that isn’t ready for sharing with the rest of the team, or
cannot be committed for some other reason.

8 Participating in gawk Development

For example, for around a nine-month period, the maintainer kept a purely local branch
for some contributed changes for which paperwork had not yet been completed.

2.4.3 A Closer Look at Branch Naming

Earlier, we said that Git maintains copies of the branches in the upstream repo, as well as
manages your local branches. You can see all these branches with ‘git branch -a’:

$ git branch -a
gawk-4.1-stable

* master
remotes/origin/HEAD -> origin/master
remotes/origin/dead-branches/async-events

remotes/origin/feature/api-mpfr
remotes/origin/feature/array-iface
remotes/origin/feature/fix-comments

o e I

You’ll note that what we’ve referred to as ‘origin/’ branches appear in the output
with an additional prefix: ‘remotes/’. Up to this point, we’ve treated Git as if it allowed
only a singled upstream repository. But in fact, you can configure it to use more than
one. All the known upstream repositories are grouped under the ‘remotes/’ prefix, with
remotes/origin being the one from which you initially cloned your local repository.

The ability to work with multiple upstream repositories is an advanced one; gawk devel-
opment does not make use of it. The intent of this subsection is to explain the output from
‘git branch -a’, nothing more.

Chapter 3: Configuring Global Settings For Git 9

3 Configuring Global Settings For Git

Before starting to use Git, you should configure it with some important settings that won’t
change as you use Git. You may configure options both globally, and on a per-repository
basis. Here, we discuss only global configuration settings.

You can configure Git using either ‘git config’, or by editing the relevant files with
your favorite text editor.!

The first things to set are your email address and your real name:

$ git config --global user.name "J.P. Developer" Set full name
$ git config --global user.email jpdev@example.com Set email address

Setting these two items are an absolute requirement. Note: No aliases are allowed. If
you can’t supply your real name, you cannot contribute to the project. Other options that
the gawk maintainer recommends that you use are:

$ git config --global push.default=simple Only push current branch
$ git config --global pager.status=true Use pager for output of git status

The global settings are stored in the .gitconfig file in your home directory. The file
looks like this:

[user]
name = J.P. Developer
email = jpdev@example.com
[push]
default = simple
[pager]
status = true
The push.default=simple setting ensures that older versions of Git only push the
current branch up to the Savannah repo. This is the safest way to operate, and is the
default in current Git versions.

There may be other settings in your configuration file as well. Use ‘git config’ to see
your settings:
$ git config --list
-| user.name=J.P. Developer
-1 user.email=jpdev@example.com
- push.default=simple

Here are the gawk maintainer’s settings:

$ git config --global --list
user.name=Arnold D. Robbins
user.email=arnold@...

credential .helper=cache --timeout=3600
push.default=simple

color.ui=false

core.autocrlf=input

I I I

I You are required to use either Vim or Emacs, other text editors are not allowed. Of course, reasonable
developers wouldn’t want to use any other editor anyway.

10 Participating in gawk Development

-1 pager.status=true
- log.decorate=auto

Additional, per-project (“local”) settings are stored in each repo’s .git/config file.

Chapter 4: Development Without Commit Access 11

4 Development Without Commit Access

In this chapter we present step-by-step recipes for checking out and working with a local
copy of the Savannah Git repo for gawk. The presentation is for when you do not have
commit access to the Git repo, and so you cannot push your changes directly.

4.1 Cloning The Repo

Clone the Savannah repo using ‘git clone’. You may do so using either the native Git
protocol, or using HTTP if you must go through a gateway or firewall that won’t pass the
Git protocol.

To choose which method, you supply a URL for the repo when you clone it, as follows.
e Clone via the Git native protocol:

$ git clone git://git.savannah.gnu.org/gawk.git Clone the repo
4 ...
$ cd gawk Start working

This will be faster, but not all firewalls pass the Git protocol on through.
e Clone via the HTTP protocol:

$ git clone http://git.savannah.gnu.org/r/gawk.git Clone the repo
4 ...
$ cd gawk Start working

You only need to clone the repo once. From then on, you update its contents using other
Git commands. For example, after coming back from your vacation in the Bahamas:

$ cd gawk Mowe to the repo

$ make distclean A good idea before updating
4 ...

$ git pull Update it

To build, you should generally follow this recipe:

$./bootstrap.sh && ./configure && make -j && make check

NOTE: Unless you have installed all the tools described in Section 8.3.1
[GNU Tools|, page 22, you must run ./bootstrap.sh every time you clone a
repo, do a ‘git pull’ or checkout a different branch. (In the latter case, do
‘make distclean’ first.) Otherwise things will get messy very quickly. The
bootstrap.sh script ensures that all of the file time stamps are up to date so
that it’s not necessary to run the various configuration tools.

4.2 Switching Branches

So far, we’ve been working in the default master branch. Let’s check what’s happening in
the gawk-4.1-stable branch:

$ make distclean Clean up

$ git checkout gawk-4.1-stable Checkout a dif-
ferent branch

_|

$ git pull Get up to date

12 Participating in gawk Development

= ...
$./bootstrap.sh && ./configure && make -j && make check Start working

4.3 Starting A New Branch

Let’s say you want to work on a new feature. For example, you might decide to add Python
syntax support.! You should create a new branch on which to work. First, switch back to
master:

$ make distclean
$ git checkout master

Now, create a new branch. The easiest way to do that is with the -b option to ‘git
checkout’:

$ git checkout -b feature/python
_|

You now do massive amounts of work in order to add Python syntax support. As you
do each defined chunk of work, you update the Changelog file with your changes before
committing them to the repo.

Let’s say you've added a new file python. c and updated several others. Use ‘git status’
to see what’s changed:

$ git status
_|

Before committing the current set of changes, you can use ‘git diff’ to view the changes.
You may also use ‘git difftool’® to run an external diff command, such as meld on
GNU/Linux:

$ git diff Regular built-in tool
$ git difftool --tool=meld GUI diff tool

When you’re happy with the changes, use ‘git add’ to tell Git which of the changed
and/or new files you wish to have ready to be committed:

$ git add ...
Use ‘git status’ to see that your changes are scheduled for committing;:

$ git status
_|

Now you can commit your changes to your branch:
$ git commit

Running ‘git commit’ causes Git to invoke an editor (typically from the $EDITOR environ-
ment variable) in which you can compose a commit message. Please supply a short message
summarizing the commit. This message will be visible via ‘git log’.

L Just joking. Please don’t attempt this for real.
2 Don’t run ‘git difftool’ in the background; it works interactively.

Chapter 4: Development Without Commit Access 13

4.4 Undoing A Change

Should you need to undo a change that you have not yet committed (so that you can start
over), you can do so on per-file basis by simply checking out the file again:

git checkout awkgram.y Undo changes to awkgram.y. There is no output

To start over completely, use ‘git reset —-hard’. Note that this will throw eway all
your changes, with no chance for recovery, so be sure you really want to do it.

4.5 Updating and Merging

As you work on your branch, you will occasionally want to bring it up to date with respect
to master. This section discusses updating local branches and handling merge conflicts.

4.5.1 Rebasing A Local Branch

For purely local branches, bringing your branch up to date is called rebasing, which causes
the branch to look as if you had started from the latest version of master. The steps are
as follows:

$ git checkout master Checkout master

$ git pull Update it

$ git checkout feature/python Mowe back to new, purely local branch
$ git rebase master “Start over” from current master

4.5.2 Dealing With Merge Conflicts

Sometimes, when merging from master into your branch, or from a branch into master,
there will be merge conflicts. These are one or more areas within a file where there are
conflicting sets of changes, and Git could not do the merge for you. In this case, the
conflicted area will be delimited by the traditional conflict markers, ‘<<<’, ‘==="and ‘>>>’.

Your mission is then to edit the file and resolve the conflict by fixing the order of additions
(such as in a ChangeLog file), or fixing the code to take new changes into account.

Once you have done so, you tell Git that everything is OK using ‘git add’ and ‘git
commit’:

$ git checkout feature/python Mowe back to new, purely local branch
$ git rebase master “Start over” from current master

- ... Kaboom! Conflict. FIXME: Show real output here

$ gvim main.c Edit the file and fix the problem

$ git add main.c Tell Git everything is OK now . . .

$ git commit ... and it’s settled

$ git rebase --continue Continue the rebase

The git rebase ——continue then continues the process of rebasing the current branch
that we started in Section 4.5.1 [Rebasing A Local Branch|, page 13. It’s not necessary if
you are using ‘git merge’ (see Section 4.8 [Points to Remember], page 15).

14 Participating in gawk Development

4.6 Submitting Your Changes

So now your feature is complete. You've added test cases for it to the test suite®, you have
ChangeLog entries that describe all the changes?, you have documented the new feature®,
and everything works great. You're ready to submit the changes for review, and with any
luck, inclusion into gawk.

There are two ways to submit your changes for review.

Generate a single large patch
To do this, simply compare your branch to the branch off which it is based:

$ git checkout feature/python
$ git diff master > /tmp/python.diff

Mail the python.diff file to the appropriate mailing list along with a descrip-
tion of what you’ve changed and why.

Generate a set of patches that in toto comprise your changes
To do this, use ‘git format-patch’

$ git checkout feature/python
$ git format-patch

This creates a set of patch files, one per commit that isn’t on the original
branch. Mail these patches, either separately, or as a set of attachments, to the
appropriate mailing list along with a description of what you've changed and
why.

Either way you choose to submit your changes, the gawk maintainer and development
team will review your changes and provide feedback. If you have signed paperwork with
the FSF for gawk and the maintainer approves your changes, he will apply the patch(es)
and commit the changes.

Which list should you send mail to? If you are just starting to contribute, use
bug-gawk@gnu.org. After making enough contributions, you may be invited to join the
private gawk developers’ mailing list. If you do so, then submit your changes to that list.

If you make any substantial changes, you will need to assign copyright in those changes
to the Free Software Foundation before the maintainer can commit those changes. See
Section 8.2 [Assigning Copyrights to the FSF], page 22, for more information.

4.7 Removing Branches

Once the maintainer has integrated your changes, you can get rid of your local branch:

$ git checkout master Mowe to upstream branch

$ git pull Update

$ gvim Changelog ... Verify your changes are in
$ git branch -d feature/python Remove your local branch

3 You did do this, didn’t you?
4 You remembered this, right?
5 You wouldn’t neglect this, would you?

mailto:bug-gawk@gnu.org

Chapter 4: Development Without Commit Access 15

4.8 Points to Remember

There are some important points to remember:

e Always do a ‘make distclean’ before switching between branches. Things will get
really confused if you don’t.

e For upstream branches, always work with tracking branches. Never use ‘git checkout
origin/whatever’. Git will happily let you do something like that, but it’s just plain
asking for trouble.

e Make sure your tracking branches are up-to-date before doing anything with them,
particularly using them as the basis for a rebase or merge. This typically means a
three-step process:

$ git checkout master Get to local copy
$ git pull Bring it up to date
$ git checkout feature/python Go back to your branch

You can then do the actual rebase:
$ git rebase master Now rebase your feature off of master

e Git always treats the currently checked-out branch as the object of operations. For
example, when comparing files with the regular diff command, the usage is ‘diff
oldfile newfile’. For ‘git diff’, the current branch takes the place of newfile, thus:

$ git checkout feature/python

$ git diff master Compare master to current branch
or if merging:

$ git checkout master Checkout master

$ git pull Update tracking branch
$ git merge feature/python Merge changes into master

16 Participating in gawk Development

5 Development With Commit Access

This chapter describes how to do development when you do have commit access to the gawk
repo on Savannah.

5.1 Initial Setup

Congratulations! After becoming a quality contributor to gawk development, you’ve been
invited to join the private development list and to accept having commit access to the repo.

The first thing to do is to create an account on Savannah, choosing a unique user name.
To do so, go to the Savannah home page and click on the “New User” link. The setup will
include uploading of your ssh key, as per the instructions on the Savannah web page.

After you've done all this, send email to the maintainer with your Savannah user name,
and he will add you to the list of users who have commit access to the repo.

5.2 Cloning The Repo With An ssh URL

In order to be able to commit changes to the repo, you must clone it using an ‘ssh://’
URL. Cloning the repo with ssh is similar to cloning with the Git protocol or with HTTP,
but the URL is different:

$ git clone ssh://yourname@git.sv.gnu.org/srv/git/gawk.git
_|

Here, you should replace ‘yourname’ in the command with the user name you chose for
use on Savannah.

5.3 Developing Patches

The first part of developing a patch is the same as for developers without commit access:
1. Develop the code and test it.

Update the ChangeLog.

If necessary, update the documentation: doc/gawktexi.in and/or doc/gawk. 1.

Use ‘git diff > mychange.diff’ to create a patch file.

Send it to the mailing list for discussion.

AN el

Iterate until the patch is ready to be committed.

However, now that you have commit access, you can commit the fix and push it up to
the repo yourself! Let’s assume you’ve made a bug fix directly on master. Here’s how to
commit your changes:

$ git diff Review the patch one more time

$ git add ... Add any files for committing

$ git commit Commit the files. Include a commit message.
$ git push Push the files up to the repo. Ta da!

The first three steps are the same described earlier (see Section 4.3 [Starting A New
Branch], page 12). The ‘git push’ is what’s new, and it updates the repo on Savannah.
Congratulations!

As a courtesy, you should send a note to the mailing list indicating that you have pushed
your change.

http://savannah.gnu.org

Chapter 5: Development With Commit Access 17

5.4 Developing New Features

Developing a new feature can be easier once you have commit access to the repo. First,
create a new branch to hold your feature:

$ git checkout master Start from master
$ git pull Be sure to be up to date
$ git checkout -b feature/python Create and switch to a new branch

Now, you can develop as normal, adding new files if necessary (such as new tests),
modifying code, updating the ChangeLog and documentation, and so on.

You can share changes with the mailing list as diffs, as usual. However, especially for a
large feature, it would be better to push your branch up to Savannah. Then, everyone else
can simply pull it down to their local systems and review your changes at their leisure.

To push your branch up initially:

$ git diff Review your changes

$ git add ... Add any files for committing

$ git commit Commit the files. Include a com-
mit message

$ git push -u origin feature/python Push the branch up to the repo

When you use ‘push -u origin’, Git helpfully converts your purely local branch into a
tracking branch. It becomes as if the branch had originated from the upstream repo and
you checked it out locally.

You only need to do ‘git push -u origin’ once. As you continue to work on your
branch, the workflow simplifies into this:

$ git diff Review your changes

$ git add ... Add any files for committing

$ git commit Commit the files

$ git push Push your changes to the branch upstream

5.5 Developing Fixes

If you want to make a fix on master or on the current stable branch, you work the same
way, by producing and discussing a diff on the mailing list. Once it’s approved, you can
commit it yourself:

$ git checkout master Move to master

$ git pull Make sure we’re up to date with the maintainer
$ gvim ... Make any fizes, compile, test

$ git diff Review your changes

$ git add ... Add any files for committing

$ git commit Commit the files. Include a commit message.

When you’re ready to push your changes:

$ git pull Download latest version; Git will merge
$ gvim ... Resolve any merge conflicts with git add and git commit
$ git push Now you can push your changes upstream

See Section 4.5.2 [Dealing With Merge Conflicts], page 13, for instructions on dealing
with merge conflicts.

18 Participating in gawk Development

6 General Development Practices

This chapter discusses general practices for gawk development. The discussion here is mainly
for developers with commit access to the Savannah repo.

Propagating Fixes
Usually, bug fixes should be made on the current “stable” branch. Once a
fix has been reviewed and approved, you can commit it and push it yourself.
Typically, the maintainer then takes care to merge the fix to master and from
there to any other branches. However, you are welcome to save him the time
and do this yourself.

Directory ownership
Some developers “own” certain parts of the tree, such as the pc and vms direc-
tories. They are allowed to commit changes to those directories without review
by the mailing list, but changes that also touch the mainline code should be
submitted for review.

New feature development
Unless you can convince the maintainer (and the other developers!) otherwise,
you should always start branches for new features from master, and not from
the current “stable” branch.

Use ‘checkout -b feature/feature_name’ to create the initial branch. You
may then elect to keep it purely local, or to push it up to Savannah for review,
even if the feature is not yet totally “ready for prime time.”

During development of a new feature, you will most likely wish to keep your feature
branch up to date with respect to ongoing improvements in master. This is generally easy
to do. There are two different mechanisms, and which one you use depends upon the nature
of your new feature branch.

As long as your branch is purely local
You should use ‘git rebase’ to the keep the branch synchronized with the
original branch from which it was forked:

$ git checkout master Move to master

$ git pull Bring it up to date

$ git checkout feature/python Mowe to your new feature branch
$ git rebase master Rebase from master

The rebasing operation may require that you resolve conflicts (see Section 4.5.2
[Dealing With Merge Conflicts|, page 13). Edit any conflicted files and resolve
the problem(s). Compile and test your changes, then use ‘git add’ and ‘git
commit’ to indicate resolution, and then use ‘git rebase --continue’ to con-
tinue the rebasing. Git is very good about providing short instructions on how
to continue when such conflicts occur.

Once the branch has been pushed up to Savannah
You must use ‘git merge’ to bring your feature branch up to date. That flow
looks like this:

$ git checkout master Move to master

Chapter 6: General Development Practices 19

$ git pull Bring it up to date
$ git checkout feature/python Mowe to your new feature branch
$ git merge master Merge from master

Here too, you may have to resolve any merge conflicts (see Section 4.5.2 [Dealing
With Merge Conflicts], page 13). Once that’s done, you can push the changes
up to Savannah.

When the changes on your branch are complete, usually the maintainer merges
the branch to master. But there’s really no magic involved, the merge is simply
done in the other direction:

$ git checkout feature/python Checkout feature branch

$ git pull Bring it up to date

$ git checkout master Checkout master

$ git pull Bring it up to date

$ git merge feature/python Merge from feature/python into master

If you’ve been keeping ‘feature/python’ in sync with master, then there should
be no merge conflicts to resolve, and you can push the result to Savannah:

$ git push Push up to Savannah
Since ‘feature/python’ is no longer needed, it can be gotten rid of:

$ git branch -d feature/python Still on master, delete fea-
ture branch
$ git push -u origin --delete feature/python Delete the branch on Savannah

The ‘git push’ command deletes the feature/python branch from the Savan-
nah repo.
Finally, you should send an email to developer’s list describing what you’ve

done so that everyone else can delete their copies of the branch and do a ‘git
fetch --prune’ (see Chapter 7 [Keeping Your Repo Organized|, page 20).

To update the other remaining development branches with the latest changes
on master, use the ‘helpers/update-branches.sh’ script in the repo.

20 Participating in gawk Development

7 Keeping Your Repo Organized

There are a few commands you should know about to help keep your local repo clean.

Remouving old branches
Developers add branches to the Savannah repo and when development on them
is done, they get merged into master. Then the branches on Savannah are
deleted (as shown in Chapter 6 [General Development Practices|, page 18).

However, your local copies of those branches (labelled with the ‘origin/’ prefix)
remain in your local repo. If you don’t need them, then you can clean up your
repo as follows.

First, remove any related tracking branch you may have:

$ git pull Get up to date
$ git branch -d feature/merged-feature Remove tracking branch
Then, ask Git to clean things up for you:

$ git fetch --prune Remove unneeded branches

Remowving cruft
As Git works, occasional “cruft” collects in the repository. Git does occasionally
clean this out on its own, but if you’re concerned about disk usage, you can do
so yourself using ‘git gc’ (short for “garbage collect”). For example:

$ du -s . Check disk usage
- 99188 . Almost 10 megabytes
$ git gc Collect garbage

- Counting objects: 32114, done.

-| Delta compression using up to 4 threads.

- Compressing objects: 100% (6370/6370), done.

- Writing objects: 100% (32114/32114), done.

- Total 32114 (delta 25655), reused 31525 (delta 25231)

$ du -s . Check disk usage again
-1 75168 . Down to 7 megabytes

Renaming branches
Occasionally you may want to rename a branch.! If your branch is local and
you are on it, us:

$ git branch -m feature/new-name
Otherwise, use:
$ git branch -m feature/old-name feature/new-name

You then need to fix the upstream repo. This command does so, using an older
syntax to simultaneously delete the old name and push the new name. You
should be on the new branch:

$ git push origin :feature/old-name feature/new-name

NOTE: It is the leading ‘:’ in the first branch name that causes Git
to delete the old name in the upstream repo. Don’t omit it!

I This discussion adopted from here.

https://multiplestates.wordpress.com/2015/02/05/rename-a-local-and-remote-branch-in-git

Chapter 7: Keeping Your Repo Organized 21

Finally, reset the upstream branch for the local branch with the new name:

$ git push -u origin feature/new-name

22 Participating in gawk Development

8 Development Stuff

This chapter discusses other things you need to know and/or do if you’re going to participate
seriously in gawk development.

8.1 Coding Style

You should read the discussion about adding code in the gawk documentation. See Section
“Making Additions to gawk” in GAWK: Effective awk Programming, for a discussion of
the general procedure. In particular, pay attention to the coding style guidelines in Section
“Adding New Features” in GAWK: Effective awk Programming.’ These two sections may
also be found online, at https://www.gnu. org/software/gawk/manual /html_node/
Additions . html#Additions, and https://www. gnu. org/software/gawk/manual /
html_node/Adding-Code.html#Adding-Code, respectively.

8.2 Assigning Copyrights to the FSF

For any change of more than just a few lines, you will need to assign copyright in (that is,
ownership of) those changes to the Free Software Foundation.

This is generally an easy thing to do. In particular, you can choose to use a version of
the copyright assignment which assigns all your current and future changes to gawk to the
FSF. This means that you only need to do the paperwork once, and from then on all your
changes will automatically belong to the FSF. The maintainer recommends doing this.

The maintainer will help you with this process once you have a contribution that warrants
it.

8.3 Software Tools You Will Need

This section discusses additional tools that you may need to install on your system in order
to be in sync with what the gawk maintainer uses. It also discusses different C compiler
options for use during code development, and how to compile gawk for debugging.

8.3.1 GNU Tools

If you expect to work with the configuration files and/or the Makefile files, you will need
to install a number of other GNU tools. In general, you should be using the latest versions
of the tools, or least the same ones that the maintainer himself uses. This helps minimize
the differences that the maintainer has to resolve when merging changes, and in general
avoids confusion and hassle. Similarly, you should install the latest GNU documentation
tools as well. The tools are described in the following list:

autoconf GNU Autoconf processes the configure.ac files in order to generate the
configure shell script and config.h.in input file. See the Autoconf home
page for more information.

automake GNU Automake processes the configure.ac and Makefile.am files to produce
Makefile.in files. See the Automake home page for more information.

! Changes that don’t follow the coding style guidelines won’t be accepted. Period.

https://www.gnu.org/software/gawk/manual/html_node/Additions.html#Additions
https://www.gnu.org/software/gawk/manual/html_node/Additions.html#Additions
https://www.gnu.org/software/gawk/manual/html_node/Adding-Code.html#Adding-Code
https://www.gnu.org/software/gawk/manual/html_node/Adding-Code.html#Adding-Code
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/automake

Chapter 8: Development Stuff 23

gettext GNU Gettext processes the gawk source code to produce the original
po/gawk.pot message template file. Normally you should not need need to do
this; the maintainer usually manages this task. See the Gettext home page for
more information.

libtool GNU Libtool works with Autoconf and Automake to produce portable shared
libraries. It is used for the extensions that ship with gawk, whose code is in the
extensions directory. See the Libtool home page for more information.

makeinfo The makeinfo command is used to build the Info versions of the documentation.
You need to have the same version as the maintainer uses, so that when you
make a change to the documentation, the corresponding change to the generated
Info file will be minimal. makeinfo is part of GNU Texinfo. See the Texinfo
home page for more information.

8.3.2 Compilers

The default compiler for gawk development is GCC, the GNU Compiler Collection. The
default version of GCC is whatever is on the maintainer’s personal GNU/Linux system,
although he does try to build the latest released version if that is newer than what’s on his
system, and then occasionally test gawk with it.

He also attempts to test occasionally with clang. However, he uses whatever is the
default for his GNU/Linux system, and does not make an effort to build the current version
for testing.

Both GCC and clang are highly optimizing compilers that produce good code, but are
very slow. There are two other compilers that are faster, but that may not produce quite
as good code. However, they are both reasonable for doing development.

The Tiny C Compiler, tcc
This compiler is very fast, but it produces only mediocre code. It is capable
of compiling gawk, and it does so well enough that ‘make check’ runs without
errors.

However, in the past the quality has varied, and the maintainer has had prob-
lems with it. He recommends using it for regular development, where fast
compiles are important, but rebuilding with GCC before doing any commits,
in case tcc has missed something.?

See the project’s home page for some information. More information can be
found in the project’s Git repository. The maintainer builds from the mob
branch for his work, but after updating it you should check that this branch
still works to compile gawk before installing it.

The (Revived) Portable C' Compiler
This is an updated version of the venerable Unix Portable C Compiler, PCC.
It accepts ANSI C syntax and supports both older and modern architectures.

It produces better code than tcc but is slower, although still much faster than
GCC and clang.

2 This bit the maintainer once.

https://www.gnu.org/software/gettext
https://www.gnu.org/software/libtool
https://www.gnu.org/software/texinfo
https://www.gnu.org/software/texinfo
https://gcc.gnu.org
https://clang.llvm.org/
http://www.tinycc.org
http://repo.or.cz/tinycc.git

24 Participating in gawk Development

See the project’s home page for more information. See http://pcc.ludd.ltu.
se/supported-platforms for instructions about obtaining the code using CVS
and building it.

An alternative location for the source is the gawk maintainer’s Git mirror of
the code.

8.4 Compiling For Debugging

If you wish to compile for debugging, you should use GCC. After running configure but
before running make, edit the Makefile and remove the -02 flag from the definition of
CFLAGS. Optionally, do the same for extensions/Makefile. Then run make.

You can enable additional debugging code by creating a file named .developing in
the gawk source code directory before running configure. Doing so enables additional
conditionally-compiled debugging code within gawk, and adds additional warning and de-
bugging options if compiling with GCC.

http://pcc.ludd.ltu.se
http://pcc.ludd.ltu.se/supported-platforms
http://pcc.ludd.ltu.se/supported-platforms
https://github.com/arnoldrobbins/pcc-revived

Appendix A: Git Command Cheat Sheet 25

Appendix A Git Command Cheat Sheet

This appendix provides an alphabetical list of the Git commands cited in this booklet, along
with brief descriptions of what the commands do.

Note that you may always use either ‘git help command’ or ‘git command --help’ to
get short, man-page style help on how to use any given Git command.

git add Add a file to the list of files to be committed.

git branch
View existing branches, or delete a branch. Most useful options: -a and -d.

git checkout
Checkout an existing branch, create a new branch, or checkout a file to reset
it. Use the -b option to create and checkout a new branch in one operation.

git clone Clone (make a new copy of) an existing repository. You generally only need to
do this once.

git commit
Commit changes to files which have been staged for committing with ‘git add’.
This makes your changes permanent, in your local repository only. To publish
your changes to an upstream repo, you must use ‘git push’.

git config
Display and/or change global and/or local configuration settings.

git diff Show a unified-format diff of what’s changed in the current directory as of
the last commit. It helps to have Git configured to use its builtin pager for
reviewing diffs (see Chapter 3 [Configuring Global Settings For Git], page 9).

git difftool
Use a “tool” (usually a GUI-based program) to view differences, instead of the
standard textual diff as you'd get from ‘git diff’.

git fetch Update your local copy of the upstream’s branches. That is, update the various
‘origin/’ branches. This leaves your local tracking branches unchanged. With
the —-prune option, this removes any copies of stale ‘origin/’ branches.

git format-patch
Create a series of patch files, one per commit not on the original branch from
which you started.

git gc Run a “garbage collection” pass in the current repository. This can often reduce
the space used in a large repo. For gawk it does not make that much difference.

git help Print a man-page—style usage summary for a command.

git log Show the current branch’s commit log. This includes who made the commit,
the date, and the commit message. Commits are shown from newest to oldest.

git merge Merge changes from the named branch into the current one.

git pull When in your local tracking branch xxx, run ‘git fetch’, and then merge from
origin/xxx into xxx.

26 Participating in gawk Development

git push Push commits from your local tracking branch xxx through origin/xxx and on
to branch xxx in the upstream repo. Use ‘git push -u origin --delete xxx’
to delete an upstream branch. (Do so carefully!)

git rebase
Rebase the changes in the current purely local branch to look as if they had been
made relative to the latest commit in the current upstream branch (typically
master). This is how you keep your local, in-progress changes up-to-date with
respect to the original branch from which they were started.

git reset Restore the original state of the repo, especially with the --hard option. Read
up on this command, and use it carefully.

git status
Show the status of files that are scheduled to be committed, and those that
have been modified but not yet scheduled for committing. Use ‘git add’ to
schedule a file for committing. This command also lists untracked files.

Appendix B: Git Resources 27

Appendix B Git Resources

There are many Git resources available on the Internet. Start at the Git Project home
page. In particular, the Pro Git book is available online.

See also the Savannah quick introduction to Git.

http://git-scm.org
http://git-scm.org
https://git-scm.com/book/en/v2
http://savannah.gnu.org/maintenance/UsingGit

28 Participating in gawk Development

Appendix C Stuff Still To Do In This Document

e Fill out all examples with full output

Index

—-help option for git............... 25
.developing file.......... ...l 24
.gitconfigfile..............o it 9

A

account, Savannah, creation of 16
assigning copyright.............. ... oo 22
autoconf 22
automake 22
Autotools 22

B

Bernat, Yehezkel L. 2
bootstrap.shscript, 11
branch, main............. ... oo il 7
branch, master........... ... 7
branches, dead i 7
branches, feature...................... 7
branches, local i 6
branches, origin/............. oo 5
branches, purely local 7
branches, removing......................... 14, 20
branches, renaming 20
branches, stable............. oL 7
branches, tracking............o oL 6

C

Changelogfile............, 12, 16
changes, submitting for review 14
clang compiler.......... oL 23
coding style.......... L. 22
committing changes.............. 12
compilers ... 23
compiling for debugging........................ 24
configuration setting, pager.status............. 9
configuration setting, push.default............. 9
configuration setting, user.email 9
configuration setting, user.name................. 9
configuration settingsl 9
configuration settings, global 9
configure.acfile........... L. 22
conflicts, from merging........... 13
copyright, assignment 22
cruft, removing i 20

Index 29

D

dead branches.................. 7
debugging, compiling for....................... 24
directory ownership............ 18
documentation files 16

E

email address ...l 9
extensions, gawk 23

F

feature branches 7
fixes, propagating to other branches............ 18

G

gawk.1 manual page 16
gawk.pot file.......... ool 22
gawktexi.in documentation 16
GCC, the GNU Compiler Collection............ 23
generating a single patch....................... 14
generating multiple patches 14
gettext 22
gitadd.........ooiiiii 12, 16, 17
gitbranch.................... 5, 14, 19, 20
git branch command, -a option................. 8
git checkout...... 6, 11, 12, 13, 14, 15, 17, 18, 19
gitclone............oooiiiiiiiiiiii 5, 11, 16
git command, --help option 25
gitcommit.......... ool 12, 16, 17
gitconfig.......... o il 9
git diff 12, 14, 15, 16, 17
git difftool....... il 12
gitfetch............. ...l 19, 20
git format-patch oL 14
git ge. ... 20
githelp.........o i 25
Blt 1Oog. .ot 12
gitmerge.....................lL 15, 18, 19
Git Projectoovviii 1
git pull 11, 13, 14, 15, 17, 18, 19, 20
gitpush.................. il 6, 16, 17, 19
gitrebase............ ...l 13, 15, 18
gitreset ... 13
git reset, —~hardoption...................... 26
gitstatus....................l 12
GitHub 3
global configuration settings..................... 9
GNU autoconfcooviiiiiiniiiniinne.n. 22
GNU automakecoevieiiiiinennnnnen... 22
GNU gettext ... 22

GNU 1ibtool ... 23

30 Participating in gawk Development

GNU makeinfoooviiiiiiiiee i 23
GNU software toolsoii.... 22
GNU Texinfooovviiii i 23

K

Kahrs, Jlirgen............... ool 2

L

1ibtool oo 23
local branches.................. 6

M

main branch 7
Makefile.amfile............................... 22
makeinfoooviiiiiii i 23
master branch, 7
meld utilityo 12
merge conflicts......... ... i i 13

O

old branches, removing......................... 20
origin/ branches................ oL 5
ownership of directories........................ 18

P

pager.status configuration setting.............. 9
patch, single, generation of 14
patches, multiple, generation of 14
pcccompiler..... ... oo 23
pcc compiler, Git mirror.............. 24
Portable C compiler................... 23
Pro Git book ...t 27
propagating fixes to other branches............. 18
purely local branches............................ 7

push.default configuration setting.............. 9

R

rebasing ... 13
removing branches................. oL 14
removing cruft........... ... i 20
removing old branches 20
renaming branches............... ... oo 20
Repository, gawk, URL for.................. 11, 16
review, changes you made...................... 14

S

Savannah, creating an account 16
Savannah, using Git guide 27
settings, configuration.................. 9
software tools........ ... i 22
sshkey... 16
stable branchesl 7

T

tecccompiler.... ... o 23
Texinfo. ... 1, 23
Tiny C compilero oL 23
tracking branches............... 6

U

URL, for cloning repositories................... 11
URL, for gawk repository................... 11, 16
user.email configuration setting................ 9
user.name configuration setting 9

	Preface
	Using This Book
	Typographical Conventions
	Acknowledgments
	Notes to Reviewers

	How to Start Contributing
	Using Git
	The ``Push/Pull'' Model of Software Development
	How Git Stores Branches and Their Copies
	Local Branches
	Branches Represent Development State
	Branches in the Savannah Repository
	Branches in Your Local Repository
	A Closer Look at Branch Naming

	Configuring Global Settings For Git
	Development Without Commit Access
	Cloning The Repo
	Switching Branches
	Starting A New Branch
	Undoing A Change
	Updating and Merging
	Rebasing A Local Branch
	Dealing With Merge Conflicts

	Submitting Your Changes
	Removing Branches
	Points to Remember

	Development With Commit Access
	Initial Setup
	Cloning The Repo With An ssh URL
	Developing Patches
	Developing New Features
	Developing Fixes

	General Development Practices
	Keeping Your Repo Organized
	Development Stuff
	Coding Style
	Assigning Copyrights to the FSF
	Software Tools You Will Need
	GNU Tools
	Compilers

	Compiling For Debugging

	Git Command Cheat Sheet
	Git Resources
	Stuff Still To Do In This Document
	Index

