
GNU M4, version 1.4.9
A powerful macro processor

Edition 1.4.9, 23 March 2007

by René Seindal, François Pinard,
Gary V. Vaughan, and Eric Blake
(bug-m4@gnu.org)

mailto:bug-m4@gnu.org

This manual is for GNU M4 (version 1.4.9, 23 March 2007), a package containing an imple-
mentation of the m4 macro language.
Copyright c© 1989, 1990, 1991, 1992, 1993, 1994, 2004, 2005, 2006, 2007 Free Software
Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License.”

i

Table of Contents

1 Introduction and preliminaries 3
1.1 Introduction to m4 . 3
1.2 Historical references . 3
1.3 Problems and bugs . 4
1.4 Using this manual . 4

2 Invoking m4 . 7
2.1 Command line options for operation modes . 7
2.2 Command line options for preprocessor features 8
2.3 Command line options for limits control . 9
2.4 Command line options for frozen state . 10
2.5 Command line options for debugging . 10
2.6 Specifying input files on the command line . 11

3 Lexical and syntactic conventions 13
3.1 Macro names . 13
3.2 Quoting input to m4 . 13
3.3 Comments in m4 input . 13
3.4 Other kinds of input tokens . 14
3.5 How m4 copies input to output . 14

4 How to invoke macros . 17
4.1 Macro invocation . 17
4.2 Preventing macro invocation . 17
4.3 Macro arguments . 19
4.4 On Quoting Arguments to macros . 20
4.5 Macro expansion . 21

5 How to define new macros . 23
5.1 Defining a macro . 23
5.2 Arguments to macros . 24
5.3 Special arguments to macros . 25
5.4 Deleting a macro . 28
5.5 Renaming macros . 29
5.6 Temporarily redefining macros . 30
5.7 Indirect call of macros . 32
5.8 Indirect call of builtins . 33

ii GNU M4 1.4.9 macro processor

6 Conditionals, loops, and recursion 35
6.1 Testing if a macro is defined . 35
6.2 If-else construct, or multibranch . 35
6.3 Recursion in m4 . 37
6.4 Iteration by counting . 39
6.5 Iteration by list contents . 40

7 How to debug macros and input 43
7.1 Displaying macro definitions . 43
7.2 Tracing macro calls . 43
7.3 Controlling debugging output . 45
7.4 Saving debugging output . 47

8 Input control . 49
8.1 Deleting whitespace in input . 49
8.2 Changing the quote characters . 50
8.3 Changing the comment delimiters . 52
8.4 Changing the lexical structure of words . 54
8.5 Saving text until end of input . 57

9 File inclusion . 59
9.1 Including named files . 59
9.2 Searching for include files . 60

10 Diverting and undiverting output 61
10.1 Diverting output . 61
10.2 Undiverting output . 62
10.3 Diversion numbers . 64
10.4 Discarding diverted text . 64

11 Macros for text handling . 67
11.1 Calculating length of strings . 67
11.2 Searching for substrings . 67
11.3 Searching for regular expressions . 67
11.4 Extracting substrings . 68
11.5 Translating characters . 69
11.6 Substituting text by regular expression . 70
11.7 Formatting strings (printf-like) . 71

12 Macros for doing arithmetic 73
12.1 Decrement and increment operators . 73
12.2 Evaluating integer expressions . 73

iii

13 Macros for running shell commands 79
13.1 Determining the platform . 79
13.2 Executing simple commands . 80
13.3 Reading the output of commands . 80
13.4 Exit status . 81
13.5 Making temporary files . 82

14 Miscellaneous builtin macros 85
14.1 Printing error messages . 85
14.2 Printing current location . 85
14.3 Exiting from m4 . 87

15 Fast loading of frozen state 89
15.1 Using frozen files . 89
15.2 Frozen file format . 90

16 Compatibility with other versions of m4 93
16.1 Extensions in GNU m4 . 93
16.2 Facilities in System V m4 not in GNU m4 . 94
16.3 Other incompatibilities . 97

17 Correct version of some examples 99
17.1 Solution for exch . 99
17.2 Solution for forloop . 99
17.3 Solution for foreach . 100
17.4 Solution for cleardivert . 103
17.5 Solution for fatal_error . 104

Appendix A How to make copies of this manual
. 105

A.1 GNU Free Documentation License . 105

Appendix B Indices of concepts and macros
. 113

B.1 Index for all m4 macros . 113
B.2 Index for many concepts . 114

iv GNU M4 1.4.9 macro processor

1

GNU m4 is an implementation of the traditional UNIX macro processor. It is mostly
SVR4 compatible, although it has some extensions (for example, handling more than 9
positional parameters to macros). m4 also has builtin functions for including files, running
shell commands, doing arithmetic, etc. Autoconf needs GNU m4 for generating ‘configure’
scripts, but not for running them.

GNU m4 was originally written by René Seindal, with subsequent changes by François
Pinard and other volunteers on the Internet. All names and email addresses can be found
in the files ‘m4-1.4.9/AUTHORS’ and ‘m4-1.4.9/THANKS’ from the GNU M4 distribution.

This is release 1.4.9. It is now considered stable: future releases in the 1.4.x series are
only meant to fix bugs, increase speed, or improve documentation. However. . .

An experimental feature, which would improve m4 usefulness, allows for changing the
syntax for what is a word in m4. You should use:

./configure --enable-changeword

if you want this feature compiled in. The current implementation slows down m4 consider-
ably and is hardly acceptable. In the future, m4 2.0 will come with a different set of new
features that provide similar capabilities, but without the inefficiencies, so changeword will
go away and you should not count on it.

2 GNU M4 1.4.9 macro processor

Chapter 1: Introduction and preliminaries 3

1 Introduction and preliminaries

This first chapter explains what GNU m4 is, where m4 comes from, how to read and use this
documentation, how to call the m4 program, and how to report bugs about it. It concludes
by giving tips for reading the remainder of the manual.

The following chapters then detail all the features of the m4 language.

1.1 Introduction to m4

m4 is a macro processor, in the sense that it copies its input to the output, expanding
macros as it goes. Macros are either builtin or user-defined, and can take any number
of arguments. Besides just doing macro expansion, m4 has builtin functions for including
named files, running shell commands, doing integer arithmetic, manipulating text in various
ways, performing recursion, etc.. . . m4 can be used either as a front-end to a compiler, or
as a macro processor in its own right.

The m4 macro processor is widely available on all UNIXes, and has been standardized by
POSIX. Usually, only a small percentage of users are aware of its existence. However, those
who find it often become committed users. The popularity of GNU Autoconf, which requires
GNU m4 for generating ‘configure’ scripts, is an incentive for many to install it, while these
people will not themselves program in m4. GNU m4 is mostly compatible with the System
V, Release 3 version, except for some minor differences. See Chapter 16 [Compatibility],
page 93, for more details.

Some people find m4 to be fairly addictive. They first use m4 for simple problems, then
take bigger and bigger challenges, learning how to write complex sets of m4 macros along
the way. Once really addicted, users pursue writing of sophisticated m4 applications even to
solve simple problems, devoting more time debugging their m4 scripts than doing real work.
Beware that m4 may be dangerous for the health of compulsive programmers.

1.2 Historical references

GPM was an important ancestor of m4. See C. Stratchey: “A General Purpose Macro gener-
ator”, Computer Journal 8,3 (1965), pp. 225 ff. GPM is also succinctly described into David
Gries classic “Compiler Construction for Digital Computers”.

The classic B. Kernighan and P.J. Plauger: “Software Tools”, Addison-Wesley, Inc.
(1976) describes and implements a Unix macro-processor language, which inspired Dennis
Ritchie to write m3, a macro processor for the AP-3 minicomputer.

Kernighan and Ritchie then joined forces to develop the original m4, as described in “The
M4 Macro Processor”, Bell Laboratories (1977). It had only 21 builtin macros.

While GPM was more pure, m4 is meant to deal with the true intricacies of real life:
macros can be recognized without being pre-announced, skipping whitespace or end-of-lines
is easier, more constructs are builtin instead of derived, etc.

Originally, the Kernighan and Plauger macro-processor, and then m3, formed the engine
for the Rational FORTRAN preprocessor, that is, the Ratfor equivalent of cpp. Later, m4
was used as a front-end for Ratfor, C and Cobol.

René Seindal released his implementation of m4, GNU m4, in 1990, with the aim of
removing the artificial limitations in many of the traditional m4 implementations, such as
maximum line length, macro size, or number of macros.

4 GNU M4 1.4.9 macro processor

The late Professor A. Dain Samples described and implemented a further evolution
in the form of M5: “User’s Guide to the M5 Macro Language: 2nd edition”, Electronic
Announcement on comp.compilers newsgroup (1992).

François Pinard took over maintenance of GNU m4 in 1992, until 1994 when he released
GNU m4 1.4, which was the stable release for 10 years. It was at this time that GNU Autoconf
decided to require GNU m4 as its underlying engine, since all other implementations of m4
had too many limitations.

More recently, in 2004, Paul Eggert released 1.4.1 and 1.4.2 which addressed some long
standing bugs in the venerable 1.4 release. Then in 2005, Gary V. Vaughan collected
together the many patches to GNU m4 1.4 that were floating around the net and released
1.4.3 and 1.4.4. And in 2006, Eric Blake joined the team and prepared patches for the release
of 1.4.5, 1.4.6, 1.4.7, and 1.4.8. The 1.4.x series remains open for bug fixes, including release
1.4.9 in 2007.

Meanwhile, development has continued on new features for m4, such as dynamic module
loading and additional builtins. When complete, GNU m4 2.0 will start a new series of
releases.

1.3 Problems and bugs

If you have problems with GNU M4 or think you’ve found a bug, please report it. Before
reporting a bug, make sure you’ve actually found a real bug. Carefully reread the documen-
tation and see if it really says you can do what you’re trying to do. If it’s not clear whether
you should be able to do something or not, report that too; it’s a bug in the documentation!

Before reporting a bug or trying to fix it yourself, try to isolate it to the smallest possible
input file that reproduces the problem. Then send us the input file and the exact results
m4 gave you. Also say what you expected to occur; this will help us decide whether the
problem was really in the documentation.

Once you’ve got a precise problem, send e-mail to bug-m4@gnu.org. Please include the
version number of m4 you are using. You can get this information with the command m4

--version. Also provide details about the platform you are executing on.
Non-bug suggestions are always welcome as well. If you have questions about things

that are unclear in the documentation or are just obscure features, please report them too.

1.4 Using this manual

This manual contains a number of examples of m4 input and output, and a simple notation
is used to distinguish input, output and error messages from m4. Examples are set out from
the normal text, and shown in a fixed width font, like this

This is an example of an example!

To distinguish input from output, all output from m4 is prefixed by the string ‘⇒’, and
all error messages by the string ‘ error ’. Thus

Example of input line
⇒Output line from m4
error and an error message

The sequence ‘^D’ in an example indicates the end of the input file. The sequence ‘NL’
refers to the newline character. The majority of these examples are self-contained, and you

mailto:bug-m4@gnu.org

Chapter 1: Introduction and preliminaries 5

can run them with similar results by invoking m4 -d. In fact, the testsuite that is bundled
in the GNU M4 package consists of the examples in this document!

As each of the predefined macros in m4 is described, a prototype call of the macro will
be shown, giving descriptive names to the arguments, e.g.,

[Composite]example (string, [count = ‘1’], [argument]. . .)
This is a sample prototype. There is not really a macro named example, but this
documents that if there were, it would be a Composite macro, rather than a Builtin.
It requires at least one argument, string. Remember that in m4, there must not be a
space between the macro name and the opening parenthesis, unless it was intended
to call the macro without any arguments. The brackets around count and argument
show that these arguments are optional. If count is omitted, the macro behaves as
if count were ‘1’, whereas if argument is omitted, the macro behaves as if it were
the empty string. A blank argument is not the same as an omitted argument. For
example, ‘example(‘a’)’, ‘example(‘a’,‘1’)’, and ‘example(‘a’,‘1’,)’ would be-
have identically with count set to ‘1’; while ‘example(‘a’,)’ and ‘example(‘a’,‘’)’
would explicitly pass the empty string for count. The ellipses (‘...’) show that the
macro processes additional arguments after argument, rather than ignoring them.

All macro arguments in m4 are strings, but some are given special interpretation, e.g., as
numbers, file names, regular expressions, etc. The documentation for each macro will state
how the parameters are interpreted, and what happens if the argument cannot be parsed
according to the desired interpretation. Unless specified otherwise, a parameter specified
to be a number is parsed as a decimal, even if the argument has leading zeros; and parsing
the empty string as a number results in 0 rather than an error, although a warning will be
issued.

This document consistently writes and uses builtin, without a hyphen, as if it were an
English word. This is how the builtin primitive is spelled within m4.

6 GNU M4 1.4.9 macro processor

Chapter 2: Invoking m4 7

2 Invoking m4

The format of the m4 command is:
m4 [option...] [file...]

All options begin with ‘-’, or if long option names are used, with ‘--’. A long option
name need not be written completely, any unambiguous prefix is sufficient. POSIX requires
m4 to recognize arguments intermixed with files, even when POSIXLY_CORRECT is set in the
environment. Most options take effect at startup regardless of their position, but some are
documented below as taking effect after any files that occurred earlier in the command line.
The argument ‘--’ is a marker to denote the end of options.

With short options, options that do not take arguments may be combined into a single
command line argument with subsequent options, options with mandatory arguments may
be provided either as a single command line argument or as two arguments, and options with
optional arguments must be provided as a single argument. In other words, m4 -QPDfoo

-d a -d+f is equivalent to m4 -Q -P -D foo -d -d+f -- ./a, although the latter form is
considered canonical.

With long options, options with mandatory arguments may be provided with an equal
sign (‘=’) in a single argument, or as two arguments, and options with optional arguments
must be provided as a single argument. In other words, m4 --def foo --debug a is equiva-
lent to m4 --define=foo --debug= -- ./a, although the latter form is considered canonical
(not to mention more robust, in case a future version of m4 introduces an option named
‘--default’).

m4 understands the following options, grouped by functionality.

2.1 Command line options for operation modes

Several options control the overall operation of m4:

--help Print a help summary on standard output, then immediately exit m4 without
reading any input files or performing any other actions.

--version
Print the version number of the program on standard output, then immediately
exit m4 without reading any input files or performing any other actions.

-E
--fatal-warnings

Controls the effect of warnings. If unspecified, then execution continues and
exit status is unaffected when a warning is printed. If specified exactly once,
warnings become fatal; when one is issued, execution continues, but the exit
status will be non-zero. If specified multiple times, then execution halts with
non-zero status the first time a warning is issued. The introduction of behavior
levels is new to M4 1.4.9; for behavior consistent with earlier versions, you
should specify ‘-E’ twice.

-i
--interactive
-e Makes this invocation of m4 interactive. This means that all output will be

unbuffered, and interrupts will be ignored. The spelling ‘-e’ exists for compat-

8 GNU M4 1.4.9 macro processor

ibility with other m4 implementations, and issues a warning because it may be
withdrawn in a future version of GNU M4.

-P
--prefix-builtins

Internally modify all builtin macro names so they all start with the prefix
‘m4_’. For example, using this option, one should write ‘m4_define’ instead of
‘define’, and ‘m4___file__’ instead of ‘__file__’. This option has no effect
if ‘-R’ is also specified.

-Q
--quiet
--silent Suppress warnings, such as missing or superfluous arguments in macro calls, or

treating the empty string as zero.

--warn-macro-sequence[=REGEXP]
Issue a warning if the regular expression REGEXP has a non-empty match in
any macro definition (either by define or pushdef). Empty matches are ig-
nored; therefore, supplying the empty string as REGEXP disables any warning.
If the optional REGEXP is not supplied, then the default regular expression
is ‘\$\({[^}]*}\|[0-9][0-9]+\)’ (a literal ‘$’ followed by multiple digits or
by an open brace), since these sequences will change semantics in the default
operation of GNU M4 2.0 (due to a change in how more than 9 arguments
in a macro definition will be handled, see Section 5.2 [Arguments], page 24).
Providing an alternate regular expression can provide a useful reverse lookup
feature of finding where a macro is defined to have a given definition.

-W REGEXP

--word-regexp=REGEXP
Use REGEXP as an alternative syntax for macro names. This experimen-
tal option will not be present in all GNU m4 implementations (see Section 8.4
[Changeword], page 54).

2.2 Command line options for preprocessor features

Several options allow m4 to behave more like a preprocessor. Macro definitions and deletions
can be made on the command line, the search path can be altered, and the output file can
track where the input came from. These features occur with the following options:

-D NAME [=VALUE]
--define=NAME [=VALUE]

This enters NAME into the symbol table. If ‘=VALUE ’ is missing, the value is
taken to be the empty string. The VALUE can be any string, and the macro
can be defined to take arguments, just as if it was defined from within the input.
This option may be given more than once; order with respect to file names is
significant, and redefining the same NAME loses the previous value.

Chapter 2: Invoking m4 9

-I DIRECTORY

--include=DIRECTORY
Make m4 search DIRECTORY for included files that are not found in the current
working directory. See Section 9.2 [Search Path], page 60, for more details. This
option may be given more than once.

-s
--synclines

Generate synchronization lines, for use by the C preprocessor or other similar
tools. Order is significant with respect to file names. This option is useful, for
example, when m4 is used as a front end to a compiler. Source file name and
line number information is conveyed by directives of the form ‘#line linenum

"file"’, which are inserted as needed into the middle of the output. Such
directives mean that the following line originated or was expanded from the
contents of input file file at line linenum. The ‘"file"’ part is often omitted
when the file name did not change from the previous directive.
Synchronization directives are always given on complete lines by themselves.
When a synchronization discrepancy occurs in the middle of an output line, the
associated synchronization directive is delayed until the beginning of the next
generated line.

-U NAME

--undefine=NAME
This deletes any predefined meaning NAME might have. Obviously, only pre-
defined macros can be deleted in this way. This option may be given more than
once; undefining a NAME that does not have a definition is silently ignored.
Order is significant with respect to file names.

2.3 Command line options for limits control

There are some limits within m4 that can be tuned. For compatibility, m4 also accepts
some options that control limits in other implementations, but which are automatically
unbounded (limited only by your hardware and operating system constraints) in GNU m4.

-G
--traditional

Suppress all the extensions made in this implementation, compared to the Sys-
tem V version. See Chapter 16 [Compatibility], page 93, for a list of these.

-H NUM

--hashsize=NUM
Make the internal hash table for symbol lookup be NUM entries big. For better
performance, the number should be prime, but this is not checked. The default
is 509 entries. It should not be necessary to increase this value, unless you
define an excessive number of macros.

-L NUM

--nesting-limit=NUM
Artificially limit the nesting of macro calls to NUM levels, stopping program
execution if this limit is ever exceeded. When not specified, nesting is limited

10 GNU M4 1.4.9 macro processor

to 1024 levels. A value of zero means unlimited; but then heavily nested code
could potentially cause a stack overflow.
The precise effect of this option might be more correctly associated with textual
nesting than dynamic recursion. It has been useful when some complex m4 input
was generated by mechanical means. Most users would never need this option.
If shown to be obtrusive, this option (which is still experimental) might well
disappear.
This option does not have the ability to break endless rescanning loops, since
these do not necessarily consume much memory or stack space. Through clever
usage of rescanning loops, one can request complex, time-consuming computa-
tions from m4 with useful results. Putting limitations in this area would break
m4 power. There are many pathological cases: ‘define(‘a’, ‘a’)a’ is only
the simplest example (but see Chapter 16 [Compatibility], page 93). Expecting
GNU m4 to detect these would be a little like expecting a compiler system to
detect and diagnose endless loops: it is a quite hard problem in general, if not
undecidable!

-B NUM

-S NUM

-T NUM These options are present for compatibility with System V m4, but do nothing
in this implementation. They may disappear in future releases, and issue a
warning to that effect.

-N NUM

--diversions=NUM
These options are present only for compatibility with previous versions of GNU
m4, and were controlling the number of possible diversions which could be used
at the same time. They do nothing, because there is no fixed limit anymore.
They may disappear in future releases, and issue a warning to that effect.

2.4 Command line options for frozen state

GNU m4 comes with a feature of freezing internal state (see Chapter 15 [Frozen files],
page 89). This can be used to speed up m4 execution when reusing a common initialization
script.

-F FILE

--freeze-state=FILE
Once execution is finished, write out the frozen state on the specified FILE. It
is conventional, but not required, for FILE to end in ‘.m4f’.

-R FILE

--reload-state=FILE
Before execution starts, recover the internal state from the specified frozen
FILE. The options ‘-D’, ‘-U’, and ‘-t’ take effect after state is reloaded, but
before the input files are read.

2.5 Command line options for debugging

Finally, there are several options for aiding in debugging m4 scripts.

Chapter 2: Invoking m4 11

-d[FLAGS]
--debug[=FLAGS]

Set the debug-level according to the flags FLAGS. The debug-level controls the
format and amount of information presented by the debugging functions. See
Section 7.3 [Debug Levels], page 45, for more details on the format and meaning
of FLAGS. If omitted, FLAGS defaults to ‘aeq’.

--debugfile=FILE
-o FILE

--error-output=FILE
Redirect dumpdef output, debug messages, and trace output to the named
FILE. Warnings, error messages, and errprint output are still printed to stan-
dard error. If unspecified, debug output goes to standard error; if empty, de-
bug output is discarded. See Section 7.4 [Debug Output], page 47, for more
details. The spellings ‘-o’ and ‘--error-output’ are misleading and inconsis-
tent with other GNU tools; for now they are silently accepted as synonyms of
‘--debugfile’, but in a future version of M4, using them will cause a warning
to be issued.

-l NUM

--arglength=NUM
Restrict the size of the output generated by macro tracing to NUM characters
per trace line. If unspecified or zero, output is unlimited. See Section 7.3
[Debug Levels], page 45, for more details.

-t NAME

--trace=NAME
This enables tracing for the macro NAME, at any point where it is defined.
NAME need not be defined when this option is given. This option may be
given more than once, and order is significant with respect to file names. See
Section 7.2 [Trace], page 43, for more details.

2.6 Specifying input files on the command line

The remaining arguments on the command line are taken to be input file names. If no
names are present, standard input is read. A file name of ‘-’ is taken to mean standard
input. It is conventional, but not required, for input files to end in ‘.m4’.

The input files are read in the sequence given. Standard input can be read more than
once, so the file name ‘-’ may appear multiple times on the command line; this makes a
difference when input is from a terminal or other special file type. It is an error if an input
file ends in the middle of argument collection, a comment, or a quoted string.

The options ‘--define’ (‘-D’), ‘--undefine’ (‘-U’), ‘--synclines’ (‘-s’), and ‘--trace’
(‘-t’) only take effect after processing input from any file names that occur earlier on the
command line.

If none of the input files invoked m4exit (see Section 14.3 [M4exit], page 87), the exit
status of m4 will be 0 for success, 1 for general failure (such as problems with reading an
input file), and 63 for version mismatch (see Section 15.1 [Using frozen files], page 89).

If you need to read a file whose name starts with a ‘-’, you can specify it as ‘./-file’,
or use ‘--’ to mark the end of options.

12 GNU M4 1.4.9 macro processor

Chapter 3: Lexical and syntactic conventions 13

3 Lexical and syntactic conventions

As m4 reads its input, it separates it into tokens. A token is either a name, a quoted string,
or any single character, that is not a part of either a name or a string. Input to m4 can also
contain comments. GNU m4 does not yet understand locales; all operations are byte-oriented
rather than character-oriented (although if your locale uses a single byte encoding, such as
ISO-8859-1, you will not notice a difference). However, m4 is eight-bit clean, so you can use
non-ascii characters in quoted strings (see Section 8.2 [Changequote], page 50), comments
(see Section 8.3 [Changecom], page 52), and macro names (see Section 5.7 [Indir], page 32),
with the exception of the nul character (the zero byte ‘’\0’’).

3.1 Macro names

A name is any sequence of letters, digits, and the character ‘_’ (underscore), where the first
character is not a digit. m4 will use the longest such sequence found in the input. If a
name has a macro definition, it will be subject to macro expansion (see Chapter 4 [Macros],
page 17). Names are case-sensitive.

Examples of legal names are: ‘foo’, ‘_tmp’, and ‘name01’.

3.2 Quoting input to m4

A quoted string is a sequence of characters surrounded by quote strings, defaulting to ‘‘’
and ‘’’, where the nested begin and end quotes within the string are balanced. The value
of a string token is the text, with one level of quotes stripped off. Thus

‘’
⇒

is the empty string, and double-quoting turns into single-quoting.

‘‘quoted’’
⇒‘quoted’

The quote characters can be changed at any time, using the builtin macro changequote.
See Section 8.2 [Changequote], page 50, for more information.

3.3 Comments in m4 input

Comments in m4 are normally delimited by the characters ‘#’ and newline. All charac-
ters between the comment delimiters are ignored, but the entire comment (including the
delimiters) is passed through to the output—comments are not discarded by m4.

Comments cannot be nested, so the first newline after a ‘#’ ends the comment. The
commenting effect of the begin-comment string can be inhibited by quoting it.

‘quoted text’ # ‘commented text’
⇒quoted text # ‘commented text’
‘quoting inhibits’ ‘#’ ‘comments’
⇒quoting inhibits # comments

The comment delimiters can be changed to any string at any time, using the builtin
macro changecom. See Section 8.3 [Changecom], page 52, for more information.

14 GNU M4 1.4.9 macro processor

3.4 Other kinds of input tokens

Any character, that is neither a part of a name, nor of a quoted string, nor a comment, is
a token by itself. When not in the context of macro expansion, all of these tokens are just
copied to output. However, during macro expansion, whitespace characters (space, tab,
newline, formfeed, carriage return, vertical tab), parentheses (‘(’ and ‘)’), comma (‘,’), and
dollar (‘$’) have additional roles, explained later.

3.5 How m4 copies input to output

As m4 reads the input token by token, it will copy each token directly to the output imme-
diately.

The exception is when it finds a word with a macro definition. In that case m4 will
calculate the macro’s expansion, possibly reading more input to get the arguments. It then
inserts the expansion in front of the remaining input. In other words, the resulting text
from a macro call will be read and parsed into tokens again.

m4 expands a macro as soon as possible. If it finds a macro call when collecting the
arguments to another, it will expand the second call first. This process continues until
there are no more macro calls to expand and all the input has been consumed.

For a running example, examine how m4 handles this input:
format(‘Result is %d’, eval(‘2**15’))

First, m4 sees that the token ‘format’ is a macro name, so it collects the tokens ‘(’, ‘‘Result
is %d’’, ‘,’, and ‘ ’, before encountering another potential macro. Sure enough, ‘eval’ is a
macro name, so the nested argument collection picks up ‘(’, ‘‘2**15’’, and ‘)’, invoking the
eval macro with the lone argument of ‘2**15’. The expansion of ‘eval(2**15)’ is ‘32768’,
which is then rescanned as the five tokens ‘3’, ‘2’, ‘7’, ‘6’, and ‘8’; and combined with the
next ‘)’, the format macro now has all its arguments, as if the user had typed:

format(‘Result is %d’, 32768)

The format macro expands to ‘Result is 32768’, and we have another round of scanning
for the tokens ‘Result’, ‘ ’, ‘is’, ‘ ’, ‘3’, ‘2’, ‘7’, ‘6’, and ‘8’. None of these are macros, so
the final output is

⇒Result is 32768

As a more complicated example, we will contrast an actual code example from the Gnulib
project1, showing both a buggy approach and the desired results. The user desires to output
a shell assignment statement that takes its argument and turns it into a shell variable by
converting it to uppercase and prepending a prefix. The original attempt looks like this:

changequote([,])dnl
define([gl_STRING_MODULE_INDICATOR],
[
dnl comment
GNULIB_]translit([$1],[a-z],[A-Z])[=1

])dnl
gl_STRING_MODULE_INDICATOR([strcase])

1 Derived from a patch in http://lists.gnu.org/archive/html/bug-gnulib/2007-01/msg00389.html,
and a followup patch in http://lists.gnu.org/archive/html/bug-gnulib/2007-02/msg00000.html

http://lists.gnu.org/archive/html/bug-gnulib/2007-01/msg00389.html
http://lists.gnu.org/archive/html/bug-gnulib/2007-02/msg00000.html

Chapter 3: Lexical and syntactic conventions 15

⇒
⇒ GNULIB_strcase=1
⇒

Oops – the argument did not get capitalized. And although the manual is not able
to easily show it, both lines that appear empty actually contain two trailing spaces. By
stepping through the parse, it is easy to see what happened. First, m4 sees the token
‘changequote’, which it recognizes as a macro, followed by ‘(’, ‘[’, ‘,’, ‘]’, and ‘)’ to
form the argument list. The macro expands to the empty string, but changes the quoting
characters to something more useful for generating shell code (unbalanced ‘‘’ and ‘’’ appear
all the time in shell scripts, but unbalanced ‘[]’ tend to be rare). Also in the first line, m4
sees the token ‘dnl’, which it recognizes as a builtin macro that consumes the rest of the
line, resulting in no output for that line.

The second line starts a macro definition. m4 sees the token ‘define’, which it recognizes
as a macro, followed by a ‘(’, ‘[gl_STRING_MODULE_INDICATOR]’, and ‘,’. Because an
unquoted comma was encountered, the first argument is known to be the expansion of
the single-quoted string token, or ‘gl_STRING_MODULE_INDICATOR’. Next, m4 sees ‘NL’, ‘
’, and ‘ ’, but this whitespace is discarded as part of argument collection. Then comes a
rather lengthy single-quoted string token, ‘[NL dnl commentNL GNULIB_]’. This is
followed by the token ‘translit’, which m4 recognizes as a macro name, so a nested macro
expansion has started.

The arguments to the translit are found by the tokens ‘(’, ‘[$1]’, ‘,’, ‘[a-z]’, ‘,’,
‘[A-Z]’, and finally ‘)’. All three string arguments are expanded (or in other words, the
quotes are stripped), and since neither ‘$’ nor ‘1’ need capitalization, the result of the macro
is ‘$1’. This expansion is rescanned, resulting in the two literal characters ‘$’ and ‘1’.

Scanning of the outer macro resumes, and picks up with ‘[=1NL]’, and finally ‘)’.
The collected pieces of expanded text are concatenated, with the end result that the macro
‘gl_STRING_MODULE_INDICATOR’ is now defined to be the sequence ‘NL dnl commentNL
GNULIB_$1=1NL ’. Once again, ‘dnl’ is recognized and avoids a newline in the output.

The final line is then parsed, beginning with ‘ ’ and ‘ ’ that are output literally. Then
‘gl_STRING_MODULE_INDICATOR’ is recognized as a macro name, with an argument list of
‘(’, ‘[strcase]’, and ‘)’. Since the definition of the macro contains the sequence ‘$1’,
that sequence is replaced with the argument ‘strcase’ prior to starting the rescan. The
rescan sees ‘NL’ and four spaces, which are output literally, then ‘dnl’, which discards
the text ‘ commentNL’. Next comes four more spaces, also output literally, and the token
‘GNULIB_strcase’, which resulted from the earlier parameter substitution. Since that is
not a macro name, it is output literally, followed by the literal tokens ‘=’, ‘1’, ‘NL’, and
two more spaces. Finally, the original ‘NL’ seen after the macro invocation is scanned and
output literally.

Now for a corrected approach. This rearranges the use of newlines and whitespace so
that less whitespace is output (which, although harmless to shell scripts, can be visually
unappealing), and fixes the quoting issues so that the capitalization occurs when the macro
‘gl_STRING_MODULE_INDICATOR’ is invoked, rather then when it is defined.

changequote([,])dnl
define([gl_STRING_MODULE_INDICATOR],
[dnl comment

16 GNU M4 1.4.9 macro processor

GNULIB_[]translit([$1], [a-z], [A-Z])=1dnl
])dnl

gl_STRING_MODULE_INDICATOR([strcase])
⇒ GNULIB_STRCASE=1

The parsing of the first line is unchanged. The second line sees the name of the macro
to define, then sees the discarded ‘NL’ and two spaces, as before. But this time, the next to-
ken is ‘[dnl commentNL GNULIB_[]translit([$1], [a-z], [A-Z])=1dnlNL]’, which in-
cludes nested quotes, followed by ‘)’ to end the macro definition and ‘dnl’ to skip the
newline. No early expansion of translit occurs, so the entire string becomes the definition
of the macro.

The final line is then parsed, beginning with two spaces that are output literally, and
an invocation of gl_STRING_MODULE_INDICATOR with the argument ‘strcase’. Again, the
‘$1’ in the macro definition is substituted prior to rescanning. Rescanning first encounters
‘dnl’, and discards ‘ commentNL’. Then two spaces are output literally. Next comes the
token ‘GNULIB_’, but that is not a macro, so it is output literally. The token ‘[]’ is an
empty string, so it does not affect output. Then the token ‘translit’ is encountered.

This time, the arguments to translit are parsed as ‘(’, ‘[strcase]’, ‘,’, ‘ ’, ‘[a-z]’,
‘,’, ‘ ’, ‘[A-Z]’, and ‘)’. The two spaces are discarded, and the translit results in the
desired result ‘STRCASE’. This is rescanned, but since it is not a macro name, it is output
literally. Then the scanner sees ‘=’ and ‘1’, which are output literally, followed by ‘dnl’
which discards the rest of the definition of gl_STRING_MODULE_INDICATOR. The newline at
the end of output is the literal ‘NL’ that appeared after the invocation of the macro.

The order in which m4 expands the macros can be further explored using the trace
facilities of GNU m4 (see Section 7.2 [Trace], page 43).

Chapter 4: How to invoke macros 17

4 How to invoke macros

This chapter covers macro invocation, macro arguments and how macro expansion is treated.

4.1 Macro invocation

Macro invocations has one of the forms
name

which is a macro invocation without any arguments, or
name(arg1, arg2, ..., argn)

which is a macro invocation with n arguments. Macros can have any number of arguments.
All arguments are strings, but different macros might interpret the arguments in different
ways.

The opening parenthesis must follow the name directly, with no spaces in between. If it
does not, the macro is called with no arguments at all.

For a macro call to have no arguments, the parentheses must be left out. The macro
call

name()

is a macro call with one argument, which is the empty string, not a call with no arguments.

4.2 Preventing macro invocation

An innovation of the m4 language, compared to some of its predecessors (like Stratchey’s
GPM, for example), is the ability to recognize macro calls without resorting to any special,
prefixed invocation character. While generally useful, this feature might sometimes be
the source of spurious, unwanted macro calls. So, GNU m4 offers several mechanisms or
techniques for inhibiting the recognition of names as macro calls.

First of all, many builtin macros cannot meaningfully be called without arguments.
As a GNU extension, for any of these macros, whenever an opening parenthesis does not
immediately follow their name, the builtin macro call is not triggered. This solves the most
usual cases, like for ‘include’ or ‘eval’. Later in this document, the sentence “This macro is
recognized only with parameters” refers to this specific provision of GNU M4, also known as
a blind builtin macro. For the builtins defined by POSIX that bear this disclaimer, POSIX
specifically states that invoking those builtins without arguments is unspecified, because
many other implementations simply invoke the builtin as though it were given one empty
argument instead.

eval
⇒eval
eval(‘1’)
⇒1

There is also a command line option (‘--prefix-builtins’, or ‘-P’, see Section 2.1
[Invoking m4], page 7) that renames all builtin macros with a prefix of ‘m4_’ at startup.
The option has no effect whatsoever on user defined macros. For example, with this option,
one has to write m4_dnl and even m4_m4exit. It also has no effect on whether a macro
requires parameters.

18 GNU M4 1.4.9 macro processor

Another alternative is to redefine problematic macros to a name less likely to cause
conflicts, See Chapter 5 [Definitions], page 23.

If your version of GNU m4 has the changeword feature compiled in, it offers far more flex-
ibility in specifying the syntax of macro names, both builtin or user-defined. See Section 8.4
[Changeword], page 54, for more information on this experimental feature.

Of course, the simplest way to prevent a name from being interpreted as a call to an
existing macro is to quote it. The remainder of this section studies a little more deeply how
quoting affects macro invocation, and how quoting can be used to inhibit macro invocation.

Even if quoting is usually done over the whole macro name, it can also be done over
only a few characters of this name (provided, of course, that the unquoted portions are not
also a macro). It is also possible to quote the empty string, but this works only inside the
name. For example:

‘divert’
⇒divert
‘d’ivert
⇒divert
di‘ver’t
⇒divert
div‘’ert
⇒divert

all yield the string ‘divert’. While in both:
‘’divert
⇒
divert‘’
⇒

the divert builtin macro will be called, which expands to the empty string.
The output of macro evaluations is always rescanned. The following example would yield

the string ‘de’, exactly as if m4 has been given ‘substr(‘abcde’, ‘3’, ‘2’)’ as input:
define(‘x’, ‘substr(ab’)
⇒
define(‘y’, ‘cde, ‘3’, ‘2’)’)
⇒
x‘’y
⇒de

Unquoted strings on either side of a quoted string are subject to being recognized as
macro names. In the following example, quoting the empty string allows for the second
macro to be recognized as such:

define(‘macro’, ‘m’)
⇒
macro(‘m’)macro
⇒mmacro
macro(‘m’)‘’macro
⇒mm

Quoting may prevent recognizing as a macro name the concatenation of a macro expan-
sion with the surrounding characters. In this example:

Chapter 4: How to invoke macros 19

define(‘macro’, ‘di$1’)
⇒
macro(‘v’)‘ert’
⇒divert
macro(‘v’)ert
⇒

the input will produce the string ‘divert’. When the quotes were removed, the divert
builtin was called instead.

4.3 Macro arguments

When a name is seen, and it has a macro definition, it will be expanded as a macro.

If the name is followed by an opening parenthesis, the arguments will be collected before
the macro is called. If too few arguments are supplied, the missing arguments are taken
to be the empty string. However, some builtins are documented to behave differently for
a missing optional argument than for an explicit empty string. If there are too many
arguments, the excess arguments are ignored. Unquoted leading whitespace is stripped off
all arguments, but whitespace generated by a macro expansion or occurring after a macro
that expanded to an empty string remains intact. Whitespace includes space, tab, newline,
carriage return, vertical tab, and formfeed.

define(‘macro’, ‘$1’)
⇒
macro(unquoted leading space lost)
⇒unquoted leading space lost
macro(‘ quoted leading space kept’)
⇒ quoted leading space kept
macro(
divert ‘unquoted space kept after expansion’)
⇒ unquoted space kept after expansion
macro(macro(‘
’)‘whitespace from expansion kept’)
⇒
⇒whitespace from expansion kept
macro(‘unquoted trailing whitespace kept’
)
⇒unquoted trailing whitespace kept
⇒

Normally m4 will issue warnings if a builtin macro is called with an inappropriate num-
ber of arguments, but it can be suppressed with the ‘--quiet’ command line option (or
‘--silent’, or ‘-Q’, see Section 2.1 [Invoking m4], page 7). For user defined macros, there
is no check of the number of arguments given.

Macros are expanded normally during argument collection, and whatever commas,
quotes and parentheses that might show up in the resulting expanded text will serve to
define the arguments as well. Thus, if foo expands to ‘, b, c’, the macro call

bar(a foo, d)

20 GNU M4 1.4.9 macro processor

is a macro call with four arguments, which are ‘a ’, ‘b’, ‘c’ and ‘d’. To understand why the
first argument contains whitespace, remember that unquoted leading whitespace is never
part of an argument, but trailing whitespace always is.

It is possible for a macro’s definition to change during argument collection, in which case
the expansion uses the definition that was in effect at the time the opening ‘(’ was seen.

define(‘f’, ‘1’)
⇒
f(define(‘f’, ‘2’))
⇒1
f
⇒2

It is an error if the end of file occurs while collecting arguments.
hello world
⇒hello world
define(
^D
error m4:stdin:2: ERROR: end of file in argument list

4.4 On Quoting Arguments to macros

Each argument has unquoted leading whitespace removed. Within each argument, all un-
quoted parentheses must match. For example, if foo is a macro,

foo(() (‘(’) ‘(’)

is a macro call, with one argument, whose value is ‘() (() (’. Commas separate arguments,
except when they occur inside quotes, comments, or unquoted parentheses. See Section 5.3
[Pseudo Arguments], page 25, for examples.

It is common practice to quote all arguments to macros, unless you are sure you want
the arguments expanded. Thus, in the above example with the parentheses, the ‘right’ way
to do it is like this:

foo(‘() (() (’)

It is, however, in certain cases necessary (because nested expansion must occur to create
the arguments for the outer macro) or convenient (because it uses fewer characters) to leave
out quotes for some arguments, and there is nothing wrong in doing it. It just makes life a
bit harder, if you are not careful to follow a consistent quoting style. For consistency, this
manual follows the rule of thumb that each layer of parentheses introduces another layer
of single quoting, except when showing the consequences of quoting rules. This is done
even when the quoted string cannot be a macro, such as with integers when you have not
changed the syntax via changeword (see Section 8.4 [Changeword], page 54).

The quoting rule of thumb of one level of quoting per parentheses has a nice property:
when a macro name appears inside parentheses, you can determine when it will be expanded.
If it is not quoted, it will be expanded prior to the outer macro, so that its expansion becomes
the argument. If it is single-quoted, it will be expanded after the outer macro. And if it is
double-quoted, it will be used as literal text instead of a macro name.

define(‘active’, ‘ACT, IVE’)
⇒

Chapter 4: How to invoke macros 21

define(‘show’, ‘$1 $1’)
⇒
show(active)
⇒ACT ACT
show(‘active’)
⇒ACT, IVE ACT, IVE
show(‘‘active’’)
⇒active active

4.5 Macro expansion

When the arguments, if any, to a macro call have been collected, the macro is expanded, and
the expansion text is pushed back onto the input (unquoted), and reread. The expansion
text from one macro call might therefore result in more macros being called, if the calls are
included, completely or partially, in the first macro calls’ expansion.

Taking a very simple example, if foo expands to ‘bar’, and bar expands to ‘Hello world’,
the input

foo

will expand first to ‘bar’, and when this is reread and expanded, into ‘Hello world’.

22 GNU M4 1.4.9 macro processor

Chapter 5: How to define new macros 23

5 How to define new macros

Macros can be defined, redefined and deleted in several different ways. Also, it is possible
to redefine a macro without losing a previous value, and bring back the original value at a
later time.

5.1 Defining a macro

The normal way to define or redefine macros is to use the builtin define:

[Builtin]define (name, [expansion])
Defines name to expand to expansion. If expansion is not given, it is taken to be
empty.
The expansion of define is void. The macro define is recognized only with param-
eters.

The following example defines the macro foo to expand to the text ‘Hello World.’.
define(‘foo’, ‘Hello world.’)
⇒
foo
⇒Hello world.

The empty line in the output is there because the newline is not a part of the macro
definition, and it is consequently copied to the output. This can be avoided by use of the
macro dnl. See Section 8.1 [Dnl], page 49, for details.

The first argument to define should be quoted; otherwise, if the macro is already
defined, you will be defining a different macro. This example shows the problems with
underquoting, since we did not want to redefine one:

define(foo, one)
⇒
define(foo, two)
⇒
one
⇒two

GNU m4 normally replaces only the topmost definition of a macro if it has several def-
initions from pushdef (see Section 5.6 [Pushdef], page 30). Some other implementations
of m4 replace all definitions of a macro with define. See Section 16.2 [Incompatibilities],
page 94, for more details.

As a GNU extension, the first argument to define does not have to be a simple word. It
can be any text string, even the empty string. A macro with a non-standard name cannot
be invoked in the normal way, as the name is not recognized. It can only be referenced
by the builtins indir (see Section 5.7 [Indir], page 32) and defn (see Section 5.5 [Defn],
page 29).

Arrays and associative arrays can be simulated by using non-standard macro names.

[Composite]array (index)
[Composite]array_set (index, [value])

Provide access to entries within an array. array reads the entry at location index,
and array_set assigns value to location index.

24 GNU M4 1.4.9 macro processor

define(‘array’, ‘defn(format(‘‘array[%d]’’, ‘$1’))’)
⇒
define(‘array_set’, ‘define(format(‘‘array[%d]’’, ‘$1’), ‘$2’)’)
⇒
array_set(‘4’, ‘array element no. 4’)
⇒
array_set(‘17’, ‘array element no. 17’)
⇒
array(‘4’)
⇒array element no. 4
array(eval(‘10 + 7’))
⇒array element no. 17

Change the ‘%d’ to ‘%s’ and it is an associative array.

5.2 Arguments to macros

Macros can have arguments. The nth argument is denoted by $n in the expansion text,
and is replaced by the nth actual argument, when the macro is expanded. Replacement
of arguments happens before rescanning, regardless of how many nesting levels of quoting
appear in the expansion. Here is an example of a macro with two arguments.

[Composite]exch (arg1, arg2)
Expands to arg2 followed by arg1, effectively exchanging their order.

define(‘exch’, ‘$2, $1’)
⇒
exch(‘arg1’, ‘arg2’)
⇒arg2, arg1

This can be used, for example, if you like the arguments to define to be reversed.

define(‘exch’, ‘$2, $1’)
⇒
define(exch(‘‘expansion text’’, ‘‘macro’’))
⇒
macro
⇒expansion text

See Section 4.4 [Quoting Arguments], page 20, for an explanation of the double quotes.
(You should try and improve this example so that clients of exch do not have to double
quote; or see Section 17.1 [Answers], page 99).

As a special case, the zeroth argument, $0, is always the name of the macro being
expanded.

define(‘test’, ‘‘Macro name: $0’’)
⇒
test
⇒Macro name: test

If you want quoted text to appear as part of the expansion text, remember that quotes
can be nested in quoted strings. Thus, in

Chapter 5: How to define new macros 25

define(‘foo’, ‘This is macro ‘foo’.’)
⇒
foo
⇒This is macro foo.

The ‘foo’ in the expansion text is not expanded, since it is a quoted string, and not a name.

GNU m4 allows the number following the ‘$’ to consist of one or more digits, allowing
macros to have any number of arguments. The extension of accepting multiple digits is
incompatible with POSIX, and is different than traditional implementations of m4, which
only recognize one digit. Therefore, future versions of GNU M4 will phase out this feature.
To portably access beyond the ninth argument, you can use the argn macro documented
later (see Section 6.3 [Shift], page 37).

POSIX also states that ‘$’ followed immediately by ‘{’ in a macro definition is
implementation-defined. This version of M4 passes the literal characters ‘${’ through
unchanged, but M4 2.0 will implement an optional feature similar to sh, where ‘${11}’
expands to the eleventh argument, to replace the current recognition of ‘$11’. Meanwhile,
if you want to guarantee that you will get a literal ‘${’ in output when expanding a macro,
even when you upgrade to M4 2.0, you can use nested quoting to your advantage:

define(‘foo’, ‘single quoted $‘’{1} output’)
⇒
define(‘bar’, ‘‘double quoted $’‘{2} output’’)
⇒
foo(‘a’, ‘b’)
⇒single quoted ${1} output
bar(‘a’, ‘b’)
⇒double quoted ${2} output

To help you detect places in your M4 input files that might change in behavior due to
the changed behavior of M4 2.0, you can use the ‘--warn-macro-sequence’ command-line
option (see Section 2.1 [Invoking m4], page 7) with the default regular expression. This
will add a warning any time a macro definition includes ‘$’ followed by multiple digits, or
by ‘{’. The warning is not enabled by default, because it triggers a number of warnings in
Autoconf 2.61 (and Autoconf uses ‘-E’ to treat warnings as errors), and because it will still
be possible to restore older behavior in M4 2.0.

$ m4 --warn-macro-sequence

define(‘foo’, ‘$001 ${1} $1’)
error m4:stdin:1: Warning: definition of ‘foo’ contains sequence ‘$001’
error m4:stdin:1: Warning: definition of ‘foo’ contains sequence ‘${1}’
⇒
foo(‘bar’)
⇒bar ${1} bar

5.3 Special arguments to macros

There is a special notation for the number of actual arguments supplied, and for all the
actual arguments.

The number of actual arguments in a macro call is denoted by $# in the expansion text.

26 GNU M4 1.4.9 macro processor

[Composite]nargs (. . .)
Expands to a count of the number of arguments supplied.

define(‘nargs’, ‘$#’)
⇒
nargs
⇒0
nargs()
⇒1
nargs(‘arg1’, ‘arg2’, ‘arg3’)
⇒3
nargs(‘commas can be quoted, like this’)
⇒1
nargs(arg1#inside comments, commas do not separate arguments
still arg1)
⇒1
nargs((unquoted parentheses, like this, group arguments))
⇒1

Remember that ‘#’ defaults to the comment character; if you forget quotes to inhibit the
comment behavior, your macro definition may not end where you expected.

dnl Attempt to define a macro to just ‘$#’
define(underquoted, $#)
oops)
⇒
underquoted
⇒0)
⇒oops

The notation $* can be used in the expansion text to denote all the actual arguments,
unquoted, with commas in between. For example

define(‘echo’, ‘$*’)
⇒
echo(arg1, arg2, arg3 , arg4)
⇒arg1,arg2,arg3 ,arg4

Often each argument should be quoted, and the notation $@ handles that. It is just like
$*, except that it quotes each argument. A simple example of that is:

define(‘echo’, ‘$@’)
⇒
echo(arg1, arg2, arg3 , arg4)
⇒arg1,arg2,arg3 ,arg4

Where did the quotes go? Of course, they were eaten, when the expanded text were
reread by m4. To show the difference, try

define(‘echo1’, ‘$*’)
⇒
define(‘echo2’, ‘$@’)
⇒
define(‘foo’, ‘This is macro ‘foo’.’)

Chapter 5: How to define new macros 27

⇒
echo1(foo)
⇒This is macro This is macro foo..
echo1(‘foo’)
⇒This is macro foo.
echo2(foo)
⇒This is macro foo.
echo2(‘foo’)
⇒foo

See Section 7.2 [Trace], page 43, if you do not understand this. As another example of the
difference, remember that comments encountered in arguments are passed untouched to the
macro, and that quoting disables comments.

define(‘echo1’, ‘$*’)
⇒
define(‘echo2’, ‘$@’)
⇒
define(‘foo’, ‘bar’)
⇒
echo1(#foo’foo
foo)
⇒#foo’foo
⇒bar
echo2(#foo’foo
foo)
⇒#foobar
⇒bar’

A ‘$’ sign in the expansion text, that is not followed by anything m4 understands, is
simply copied to the macro expansion, as any other text is.

define(‘foo’, ‘$$$ hello $$$’)
⇒
foo
⇒$$$ hello $$$

If you want a macro to expand to something like ‘$12’, the judicious use of nested quoting
can put a safe character between the $ and the next character, relying on the rescanning to
remove the nested quote. This will prevent m4 from interpreting the $ sign as a reference
to an argument.

define(‘foo’, ‘no nested quote: $1’)
⇒
foo(‘arg’)
⇒no nested quote: arg
define(‘foo’, ‘nested quote around $: ‘$’1’)
⇒
foo(‘arg’)
⇒nested quote around $: $1
define(‘foo’, ‘nested empty quote after $: $‘’1’)

28 GNU M4 1.4.9 macro processor

⇒
foo(‘arg’)
⇒nested empty quote after $: $1
define(‘foo’, ‘nested quote around next character: $‘1’’)
⇒
foo(‘arg’)
⇒nested quote around next character: $1
define(‘foo’, ‘nested quote around both: ‘$1’’)
⇒
foo(‘arg’)
⇒nested quote around both: arg

5.4 Deleting a macro

A macro definition can be removed with undefine:

[Builtin]undefine (name . . .)
For each argument, remove the macro name. The macro names must necessarily be
quoted, since they will be expanded otherwise.

The expansion of undefine is void. The macro undefine is recognized only with
parameters.

foo bar blah
⇒foo bar blah
define(‘foo’, ‘some’)define(‘bar’, ‘other’)define(‘blah’, ‘text’)
⇒
foo bar blah
⇒some other text
undefine(‘foo’)
⇒
foo bar blah
⇒foo other text
undefine(‘bar’, ‘blah’)
⇒
foo bar blah
⇒foo bar blah

Undefining a macro inside that macro’s expansion is safe; the macro still expands to the
definition that was in effect at the ‘(’.

define(‘f’, ‘‘$0’:$1’)
⇒
f(f(f(undefine(‘f’)‘hello world’)))
⇒f:f:f:hello world
f(‘bye’)
⇒f(bye)

It is not an error for name to have no macro definition. In that case, undefine does
nothing.

Chapter 5: How to define new macros 29

5.5 Renaming macros

It is possible to rename an already defined macro. To do this, you need the builtin defn:

[Builtin]defn (name)
Expands to the quoted definition of name. If the argument is not a defined macro,
the expansion is void.
If name is a user-defined macro, the quoted definition is simply the quoted expansion
text. If, instead, name is a builtin, the expansion is a special token, which points to
the builtin’s internal definition. This token is only meaningful as the second argument
to define (and pushdef), and is silently converted to an empty string in most other
contexts.
The macro defn is recognized only with parameters.

Its normal use is best understood through an example, which shows how to rename
undefine to zap:

define(‘zap’, defn(‘undefine’))
⇒
zap(‘undefine’)
⇒
undefine(‘zap’)
⇒undefine(zap)

In this way, defn can be used to copy macro definitions, and also definitions of builtin
macros. Even if the original macro is removed, the other name can still be used to access
the definition.

The fact that macro definitions can be transferred also explains why you should use $0,
rather than retyping a macro’s name in its definition:

define(‘foo’, ‘This is ‘$0’’)
⇒
define(‘bar’, defn(‘foo’))
⇒
bar
⇒This is bar

Macros used as string variables should be referred through defn, to avoid unwanted
expansion of the text:

define(‘string’, ‘The macro dnl is very useful
’)
⇒
string
⇒The macro
defn(‘string’)
⇒The macro dnl is very useful
⇒

However, it is important to remember that m4 rescanning is purely textual. If an un-
balanced end-quote string occurs in a macro definition, the rescan will see that embedded
quote as the termination of the quoted string, and the remainder of the macro’s definition

30 GNU M4 1.4.9 macro processor

will be rescanned unquoted. Thus it is a good idea to avoid unbalanced end-quotes in macro
definitions or arguments to macros.

define(‘foo’, a’a)
⇒
define(‘a’, ‘A’)
⇒
define(‘echo’, ‘$@’)
⇒
foo
⇒A’A
defn(‘foo’)
⇒aA’
echo(foo)
⇒AA’

Using defn to generate special tokens for builtin macros outside of expected contexts
can sometimes trigger warnings. But most of the time, such tokens are silently converted
to the empty string.

defn(‘defn’)
⇒
define(defn(‘divnum’), ‘cannot redefine a builtin token’)
error m4:stdin:2: Warning: define: invalid macro name ignored
⇒
divnum
⇒0

5.6 Temporarily redefining macros

It is possible to redefine a macro temporarily, reverting to the previous definition at a later
time. This is done with the builtins pushdef and popdef:

[Builtin]pushdef (name, [expansion])
[Builtin]popdef (name . . .)

Analogous to define and undefine.
These macros work in a stack-like fashion. A macro is temporarily redefined with
pushdef, which replaces an existing definition of name, while saving the previous
definition, before the new one is installed. If there is no previous definition, pushdef
behaves exactly like define.
If a macro has several definitions (of which only one is accessible), the topmost defini-
tion can be removed with popdef. If there is no previous definition, popdef behaves
like undefine.
The expansion of both pushdef and popdef is void. The macros pushdef and popdef
are recognized only with parameters.

define(‘foo’, ‘Expansion one.’)
⇒
foo
⇒Expansion one.

Chapter 5: How to define new macros 31

pushdef(‘foo’, ‘Expansion two.’)
⇒
foo
⇒Expansion two.
pushdef(‘foo’, ‘Expansion three.’)
⇒
pushdef(‘foo’, ‘Expansion four.’)
⇒
popdef(‘foo’)
⇒
foo
⇒Expansion three.
popdef(‘foo’, ‘foo’)
⇒
foo
⇒Expansion one.
popdef(‘foo’)
⇒
foo
⇒foo

If a macro with several definitions is redefined with define, the topmost definition is
replaced with the new definition. If it is removed with undefine, all the definitions are
removed, and not only the topmost one. However, POSIX allows other implementations
that treat define as replacing an entire stack of definitions with a single new definition,
so to be portable to other implementations, it may be worth explicitly using popdef and
pushdef rather than relying on the GNU behavior of define.

define(‘foo’, ‘Expansion one.’)
⇒
foo
⇒Expansion one.
pushdef(‘foo’, ‘Expansion two.’)
⇒
foo
⇒Expansion two.
define(‘foo’, ‘Second expansion two.’)
⇒
foo
⇒Second expansion two.
undefine(‘foo’)
⇒
foo
⇒foo

Local variables within macros are made with pushdef and popdef. At the start of the
macro a new definition is pushed, within the macro it is manipulated and at the end it is
popped, revealing the former definition.

It is possible to temporarily redefine a builtin with pushdef and defn.

32 GNU M4 1.4.9 macro processor

5.7 Indirect call of macros

Any macro can be called indirectly with indir:

[Builtin]indir (name, [args...])
Results in a call to the macro name, which is passed the rest of the arguments args.
If name is not defined, an error message is printed, and the expansion is void.

The macro indir is recognized only with parameters.

This can be used to call macros with computed or “invalid” names (define allows such
names to be defined):

define(‘$$internal$macro’, ‘Internal macro (name ‘$0’)’)
⇒
$$internal$macro
⇒$$internal$macro
indir(‘$$internal$macro’)
⇒Internal macro (name $$internal$macro)

The point is, here, that larger macro packages can have private macros defined, that will
not be called by accident. They can only be called through the builtin indir.

One other point to observe is that argument collection occurs before indir invokes
name, so if argument collection changes the value of name, that will be reflected in the final
expansion. This is different than the behavior when invoking macros directly, where the
definition that was in effect before argument collection is used.

define(‘f’, ‘1’)
⇒
f(define(‘f’, ‘2’))
⇒1
indir(‘f’, define(‘f’, ‘3’))
⇒3
indir(‘f’, undefine(‘f’))
error m4:stdin:4: undefined macro ‘f’
⇒

When handed the result of defn (see Section 5.5 [Defn], page 29) as one of its arguments,
indir defers to the invoked name for whether a token representing a builtin is recognized
or flattened to the empty string.

indir(defn(‘defn’), ‘divnum’)
error m4:stdin:1: Warning: indir: invalid macro name ignored
⇒
indir(‘define’, defn(‘defn’), ‘divnum’)
error m4:stdin:2: Warning: define: invalid macro name ignored
⇒
indir(‘define’, ‘foo’, defn(‘divnum’))
⇒
foo
⇒0
indir(‘divert’, defn(‘foo’))

Chapter 5: How to define new macros 33

error m4:stdin:5: empty string treated as 0 in builtin ‘divert’
⇒

5.8 Indirect call of builtins

Builtin macros can be called indirectly with builtin:

[Builtin]builtin (name, [args...])
Results in a call to the builtin name, which is passed the rest of the arguments args.
If name does not name a builtin, an error message is printed, and the expansion is
void.
The macro builtin is recognized only with parameters.

This can be used even if name has been given another definition that has covered the
original, or been undefined so that no macro maps to the builtin.

pushdef(‘define’, ‘hidden’)
⇒
undefine(‘undefine’)
⇒
define(‘foo’, ‘bar’)
⇒hidden
foo
⇒foo
builtin(‘define’, ‘foo’, defn(‘divnum’))
⇒
foo
⇒0
builtin(‘define’, ‘foo’, ‘BAR’)
⇒
foo
⇒BAR
undefine(‘foo’)
⇒undefine(foo)
foo
⇒BAR
builtin(‘undefine’, ‘foo’)
⇒
foo
⇒foo

The name argument only matches the original name of the builtin, even when the
‘--prefix-builtins’ option (or ‘-P’, see Section 2.1 [Invoking m4], page 7) is in effect.
This is different from indir, which only tracks current macro names.

Note that indir and builtin can be used to invoke builtins without arguments, even
when they normally require parameters to be recognized; but it will provoke a warning, and
result in a void expansion.

builtin
⇒builtin

34 GNU M4 1.4.9 macro processor

builtin()
error m4:stdin:2: undefined builtin ‘’
⇒
builtin(‘builtin’)
error m4:stdin:3: Warning: too few arguments to builtin ‘builtin’
⇒
builtin(‘builtin’,)
error m4:stdin:4: undefined builtin ‘’
⇒

Chapter 6: Conditionals, loops, and recursion 35

6 Conditionals, loops, and recursion

Macros, expanding to plain text, perhaps with arguments, are not quite enough. We would
like to have macros expand to different things, based on decisions taken at run-time. For
that, we need some kind of conditionals. Also, we would like to have some kind of loop
construct, so we could do something a number of times, or while some condition is true.

6.1 Testing if a macro is defined

There are two different builtin conditionals in m4. The first is ifdef:

[Builtin]ifdef (name, string-1, [string-2])
If name is defined as a macro, ifdef expands to string-1, otherwise to string-2. If
string-2 is omitted, it is taken to be the empty string (according to the normal rules).
The macro ifdef is recognized only with parameters.

ifdef(‘foo’, ‘‘foo’ is defined’, ‘‘foo’ is not defined’)
⇒foo is not defined
define(‘foo’, ‘’)
⇒
ifdef(‘foo’, ‘‘foo’ is defined’, ‘‘foo’ is not defined’)
⇒foo is defined
ifdef(‘no_such_macro’, ‘yes’, ‘no’, ‘extra argument’)
error m4:stdin:4: Warning: excess arguments to builtin ‘ifdef’ ignored
⇒no

6.2 If-else construct, or multibranch

The other conditional, ifelse, is much more powerful. It can be used as a way to introduce
a long comment, as an if-else construct, or as a multibranch, depending on the number of
arguments supplied:

[Builtin]ifelse (comment)
[Builtin]ifelse (string-1, string-2, equal, [not-equal])
[Builtin]ifelse (string-1, string-2, equal-1, string-3, string-4, equal-2,

. . .)
Used with only one argument, the ifelse simply discards it and produces no output.
If called with three or four arguments, ifelse expands into equal, if string-1 and
string-2 are equal (character for character), otherwise it expands to not-equal. A
final fifth argument is ignored, after triggering a warning.
If called with six or more arguments, and string-1 and string-2 are equal, ifelse
expands into equal-1, otherwise the first three arguments are discarded and the pro-
cessing starts again.
The macro ifelse is recognized only with parameters.

Using only one argument is a common m4 idiom for introducing a block comment, as an
alternative to repeatedly using dnl. This special usage is recognized by GNU m4, so that in
this case, the warning about missing arguments is never triggered.

36 GNU M4 1.4.9 macro processor

ifelse(‘some comments’)
⇒
ifelse(‘foo’, ‘bar’)
error m4:stdin:2: Warning: too few arguments to builtin ‘ifelse’
⇒

Using three or four arguments provides decision points.

ifelse(‘foo’, ‘bar’, ‘true’)
⇒
ifelse(‘foo’, ‘foo’, ‘true’)
⇒true
define(‘foo’, ‘bar’)
⇒
ifelse(foo, ‘bar’, ‘true’, ‘false’)
⇒true
ifelse(foo, ‘foo’, ‘true’, ‘false’)
⇒false

Notice how the first argument was used unquoted; it is common to compare the expansion
of a macro with a string. With this macro, you can now reproduce the behavior of blind
builtins, where the macro is recognized only with arguments.

define(‘foo’, ‘ifelse(‘$#’, ‘0’, ‘‘$0’’, ‘arguments:$#’)’)
⇒
foo
⇒foo
foo()
⇒arguments:1
foo(‘a’, ‘b’, ‘c’)
⇒arguments:3

However, ifelse can take more than four arguments. If given more than four arguments,
ifelse works like a case or switch statement in traditional programming languages. If
string-1 and string-2 are equal, ifelse expands into equal-1, otherwise the procedure is
repeated with the first three arguments discarded. This calls for an example:

ifelse(‘foo’, ‘bar’, ‘third’, ‘gnu’, ‘gnats’)
error m4:stdin:1: Warning: excess arguments to builtin ‘ifelse’ ignored
⇒gnu
ifelse(‘foo’, ‘bar’, ‘third’, ‘gnu’, ‘gnats’, ‘sixth’)
⇒
ifelse(‘foo’, ‘bar’, ‘third’, ‘gnu’, ‘gnats’, ‘sixth’, ‘seventh’)
⇒seventh
ifelse(‘foo’, ‘bar’, ‘3’, ‘gnu’, ‘gnats’, ‘6’, ‘7’, ‘8’)
error m4:stdin:4: Warning: excess arguments to builtin ‘ifelse’ ignored
⇒7

Naturally, the normal case will be slightly more advanced than these examples. A
common use of ifelse is in macros implementing loops of various kinds.

Chapter 6: Conditionals, loops, and recursion 37

6.3 Recursion in m4

There is no direct support for loops in m4, but macros can be recursive. There is no limit on
the number of recursion levels, other than those enforced by your hardware and operating
system.

Loops can be programmed using recursion and the conditionals described previously.

There is a builtin macro, shift, which can, among other things, be used for iterating
through the actual arguments to a macro:

[Builtin]shift (arg1, . . .)
Takes any number of arguments, and expands to all its arguments except arg1, sepa-
rated by commas, with each argument quoted.

The macro shift is recognized only with parameters.

shift
⇒shift
shift(‘bar’)
⇒
shift(‘foo’, ‘bar’, ‘baz’)
⇒bar,baz

An example of the use of shift is this macro:

[Composite]reverse (. . .)
Takes any number of arguments, and reverses their order.

It is implemented as:

define(‘reverse’, ‘ifelse(‘$#’, ‘0’, , ‘$#’, ‘1’, ‘‘$1’’,
‘reverse(shift($@)), ‘$1’’)’)

⇒
reverse
⇒
reverse(‘foo’)
⇒foo
reverse(‘foo’, ‘bar’, ‘gnats’, ‘and gnus’)
⇒and gnus, gnats, bar, foo

While not a very interesting macro, it does show how simple loops can be made with
shift, ifelse and recursion. It also shows that shift is usually used with ‘$@’. Sometimes,
a recursive algorithm requires adding quotes to each element:

[Composite]quote (. . .)
[Composite]dquote (. . .)
[Composite]dquote_elt (. . .)

Takes any number of arguments, and adds quoting. With quote, only one level of
quoting is added, effectively removing whitespace after commas and turning multiple
arguments into a single string. With dquote, two levels of quoting are added, one
around each element, and one around the list. And with dquote_elt, two levels of
quoting are added around each element.

38 GNU M4 1.4.9 macro processor

An actual implementation of these three macros is distributed as ‘m4-1.4.9/examples/
quote.m4’ in this package. First, let’s examine their usage:

include(‘quote.m4’)
⇒
-quote-dquote-dquote_elt-
⇒----
-quote()-dquote()-dquote_elt()-
⇒--‘’-‘’-
-quote(‘1’)-dquote(‘1’)-dquote_elt(‘1’)-
⇒-1-‘1’-‘1’-
-quote(‘1’, ‘2’)-dquote(‘1’, ‘2’)-dquote_elt(‘1’, ‘2’)-
⇒-1,2-‘1’,‘2’-‘1’,‘2’-
define(‘n’, ‘$#’)dnl
-n(quote(‘1’, ‘2’))-n(dquote(‘1’, ‘2’))-n(dquote_elt(‘1’, ‘2’))-
⇒-1-1-2-
dquote(dquote_elt(‘1’, ‘2’))
⇒‘‘1’’,‘‘2’’
dquote_elt(dquote(‘1’, ‘2’))
⇒‘‘1’,‘2’’

The last two lines show that when given two arguments, dquote results in one string,
while dquote_elt results in two. Now, examine the implementation. Note that quote
and dquote_elt make decisions based on their number of arguments, so that when called
without arguments, they result in nothing instead of a quoted empty string; this is so that
it is possible to distinguish between no arguments and an empty first argument. dquote, on
the other hand, results in a string no matter what, since it is still possible to tell whether
it was invoked without arguments based on the resulting string.

undivert(‘quote.m4’)dnl
⇒divert(‘-1’)
⇒# quote(args) - convert args to single-quoted string
⇒define(‘quote’, ‘ifelse(‘$#’, ‘0’, ‘’, ‘‘$*’’)’)
⇒# dquote(args) - convert args to quoted list of quoted strings
⇒define(‘dquote’, ‘‘$@’’)
⇒# dquote_elt(args) - convert args to list of double-quoted strings
⇒define(‘dquote_elt’, ‘ifelse(‘$#’, ‘0’, ‘’, ‘$#’, ‘1’, ‘‘‘$1’’’,
⇒ ‘‘‘$1’’,$0(shift($@))’)’)
⇒divert‘’dnl

One more useful macro based on shift allows portably selecting an arbitrary argument
(usually greater than the ninth argument), without relying on the GNU extension of multi-
digit arguments (see Section 5.2 [Arguments], page 24).

[Composite]argn (n, . . .)
Expands to argument n out of the remaining arguments. n must be a positive number.
Usually invoked as ‘argn(‘n’,$@)’.

It is implemented as:

define(‘argn’, ‘ifelse(‘$1’, 1, ‘‘$2’’,

Chapter 6: Conditionals, loops, and recursion 39

‘argn(decr(‘$1’), shift(shift($@)))’)’)
⇒
argn(‘1’, ‘a’)
⇒a
define(‘foo’, ‘argn(‘11’, $@)’)
⇒
foo(‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’, ‘k’, ‘l’)
⇒k

6.4 Iteration by counting

Here is an example of a loop macro that implements a simple for loop.

[Composite]forloop (iterator, start, end, text)
Takes the name in iterator, which must be a valid macro name, and successively
assign it each integer value from start to end, inclusive. For each assignment to
iterator, append text to the expansion of the forloop. text may refer to iterator.
Any definition of iterator prior to this invocation is restored.

It can, for example, be used for simple counting:

include(‘forloop.m4’)
⇒
forloop(‘i’, ‘1’, ‘8’, ‘i ’)
⇒1 2 3 4 5 6 7 8

For-loops can be nested, like:

include(‘forloop.m4’)
⇒
forloop(‘i’, ‘1’, ‘4’, ‘forloop(‘j’, ‘1’, ‘8’, ‘ (i, j)’)
’)
⇒ (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8)
⇒ (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8)
⇒ (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7) (3, 8)
⇒ (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7) (4, 8)
⇒

The implementation of the forloop macro is fairly straightforward. The forloop macro
itself is simply a wrapper, which saves the previous definition of the first argument, calls
the internal macro _forloop, and re-establishes the saved definition of the first argument.

The macro _forloop expands the fourth argument once, and tests to see if the iterator
has reached the final value. If it has not finished, it increments the iterator (using the
predefined macro incr, see Section 12.1 [Incr], page 73), and recurses.

Here is an actual implementation of forloop, distributed as ‘m4-1.4.9/examples/
forloop.m4’ in this package:

undivert(‘forloop.m4’)dnl
⇒divert(‘-1’)
⇒# forloop(var, from, to, stmt) - simple version
⇒define(‘forloop’, ‘pushdef(‘$1’, ‘$2’)_forloop($@)popdef(‘$1’)’)

40 GNU M4 1.4.9 macro processor

⇒define(‘_forloop’,
⇒ ‘$4‘’ifelse($1, ‘$3’, ‘’, ‘define(‘$1’, incr($1))$0($@)’)’)
⇒divert‘’dnl

Notice the careful use of quotes. Certain macro arguments are left unquoted, each for its
own reason. Try to find out why these arguments are left unquoted, and see what happens
if they are quoted. (As presented, these two macros are useful but not very robust for
general use. They lack even basic error handling for cases like start less than end, end not
numeric, or iterator not being a macro name. See if you can improve these macros; or see
Section 17.2 [Answers], page 99).

6.5 Iteration by list contents

Here is an example of a loop macro that implements list iteration.

[Composite]foreach (iterator, paren-list, text)
[Composite]foreachq (iterator, quote-list, text)

Takes the name in iterator, which must be a valid macro name, and successively
assign it each value from paren-list or quote-list. In foreach, paren-list is a comma-
separated list of elements contained in parentheses. In foreachq, quote-list is a
comma-separated list of elements contained in a quoted string. For each assignment
to iterator, append text to the overall expansion. text may refer to iterator. Any
definition of iterator prior to this invocation is restored.

As an example, this displays each word in a list inside of a sentence, using an imple-
mentation of foreach distributed as ‘m4-1.4.9/examples/foreach.m4’, and foreachq in
‘m4-1.4.9/examples/foreachq.m4’.

include(‘foreach.m4’)
⇒
foreach(‘x’, (foo, bar, foobar), ‘Word was: x
’)dnl
⇒Word was: foo
⇒Word was: bar
⇒Word was: foobar
include(‘foreachq.m4’)
⇒
foreachq(‘x’, ‘foo, bar, foobar’, ‘Word was: x
’)dnl
⇒Word was: foo
⇒Word was: bar
⇒Word was: foobar

It is possible to be more complex; each element of the paren-list or quote-list can itself
be a list, to pass as further arguments to a helper macro. This example generates a shell
case statement:

include(‘foreach.m4’)
⇒
define(‘_case’, ‘ $1)

$2=" $1";;

Chapter 6: Conditionals, loops, and recursion 41

’)dnl
define(‘_cat’, ‘$1$2’)dnl
case $‘’1 in
⇒case $1 in
foreach(‘x’, ‘(‘(‘a’, ‘vara’)’, ‘(‘b’, ‘varb’)’, ‘(‘c’, ‘varc’)’)’,

‘_cat(‘_case’, x)’)dnl
⇒ a)
⇒ vara=" a";;
⇒ b)
⇒ varb=" b";;
⇒ c)
⇒ varc=" c";;
esac
⇒esac

The implementation of the foreach macro is a bit more involved; it is a wrapper around
two helper macros. First, _arg1 is needed to grab the first element of a list. Second,
_foreach implements the recursion, successively walking through the original list. Here is
a simple implementation of foreach:

undivert(‘foreach.m4’)dnl
⇒divert(‘-1’)
⇒# foreach(x, (item_1, item_2, ..., item_n), stmt)
⇒# parenthesized list, simple version
⇒define(‘foreach’, ‘pushdef(‘$1’)_foreach($@)popdef(‘$1’)’)
⇒define(‘_arg1’, ‘$1’)
⇒define(‘_foreach’, ‘ifelse(‘$2’, ‘()’, ‘’,
⇒ ‘define(‘$1’, _arg1$2)$3‘’$0(‘$1’, (shift$2), ‘$3’)’)’)
⇒divert‘’dnl

Unfortunately, that implementation is not robust to macro names as list elements. Each
iteration of _foreach is stripping another layer of quotes, leading to erratic results if list
elements are not already fully expanded. The first cut at implementing foreachq takes
this into account. Also, when using quoted elements in a paren-list, the overall list must
be quoted. A quote-list has the nice property of requiring fewer characters to create a list
containing the same quoted elements. To see the difference between the two macros, we
attempt to pass double-quoted macro names in a list, expecting the macro name on output
after one layer of quotes is removed during list iteration and the final layer removed during
the final rescan:

define(‘a’, ‘1’)define(‘b’, ‘2’)define(‘c’, ‘3’)
⇒
include(‘foreach.m4’)
⇒
include(‘foreachq.m4’)
⇒
foreach(‘x’, ‘(‘‘a’’, ‘‘(b’’, ‘‘c)’’)’, ‘x
’)
⇒1
⇒(2)1

42 GNU M4 1.4.9 macro processor

⇒
⇒, x
⇒)
foreachq(‘x’, ‘‘‘a’’, ‘‘(b’’, ‘‘c)’’’, ‘x
’)dnl
⇒a
⇒(b
⇒c)

Obviously, foreachq did a better job; here is its implementation:
undivert(‘foreachq.m4’)dnl
⇒include(‘quote.m4’)dnl
⇒divert(‘-1’)
⇒# foreachq(x, ‘item_1, item_2, ..., item_n’, stmt)
⇒# quoted list, simple version
⇒define(‘foreachq’, ‘pushdef(‘$1’)_foreachq($@)popdef(‘$1’)’)
⇒define(‘_arg1’, ‘$1’)
⇒define(‘_foreachq’, ‘ifelse(quote($2), ‘’, ‘’,
⇒ ‘define(‘$1’, ‘_arg1($2)’)$3‘’$0(‘$1’, ‘shift($2)’, ‘$3’)’)’)
⇒divert‘’dnl

Notice that _foreachq had to use the helper macro quote defined earlier (see Section 6.3
[Shift], page 37), to ensure that the embedded ifelse call does not go haywire if a list
element contains a comma. Unfortunately, this implementation of foreachq has its own
severe flaw. Whereas the foreach implementation was linear, this macro is quadratic in the
number of list elements, and is much more likely to trip up the limit set by the command line
option ‘--nesting-limit’ (or ‘-L’, see Section 2.3 [Invoking m4], page 9). (It is possible to
have robust iteration with linear behavior for either list style. See if you can learn from the
best elements of both of these implementations to create robust macros; or see Section 17.3
[Answers], page 100).

Chapter 7: How to debug macros and input 43

7 How to debug macros and input

When writing macros for m4, they often do not work as intended on the first try (as is the
case with most programming languages). Fortunately, there is support for macro debugging
in m4.

7.1 Displaying macro definitions

If you want to see what a name expands into, you can use the builtin dumpdef:

[Builtin]dumpdef ([names...])
Accepts any number of arguments. If called without any arguments, it displays the
definitions of all known names, otherwise it displays the definitions of the names
given. The output is printed to the current debug file (usually standard error), and
is sorted by name. If an unknown name is encountered, a warning is printed.
The expansion of dumpdef is void.

define(‘foo’, ‘Hello world.’)
⇒
dumpdef(‘foo’)
error foo: ‘Hello world.’
⇒
dumpdef(‘define’)
error define: <define>
⇒

The last example shows how builtin macros definitions are displayed. The definition that
is dumped corresponds to what would occur if the macro were to be called at that point,
even if other definitions are still live due to redefining a macro during argument collection.

pushdef(‘f’, ‘‘$0’1’)pushdef(‘f’, ‘‘$0’2’)
⇒
f(popdef(‘f’)dumpdef(‘f’))
error f: ‘‘$0’1’
⇒f2
f(popdef(‘f’)dumpdef(‘f’))
error m4:stdin:3: undefined macro ‘f’
⇒f1

See Section 7.3 [Debug Levels], page 45, for information on controlling the details of the
display.

7.2 Tracing macro calls

It is possible to trace macro calls and expansions through the builtins traceon and
traceoff:

[Builtin]traceon ([names...])
[Builtin]traceoff ([names...])

When called without any arguments, traceon and traceoff will turn tracing on and
off, respectively, for all currently defined macros.

44 GNU M4 1.4.9 macro processor

When called with arguments, only the macros listed in names are affected, whether
or not they are currently defined.
The expansion of traceon and traceoff is void.

Whenever a traced macro is called and the arguments have been collected, the call is
displayed. If the expansion of the macro call is not void, the expansion can be displayed
after the call. The output is printed to the current debug file (defaulting to standard error,
see Section 7.4 [Debug Output], page 47).

define(‘foo’, ‘Hello World.’)
⇒
define(‘echo’, ‘$@’)
⇒
traceon(‘foo’, ‘echo’)
⇒
foo
error m4trace: -1- foo -> ‘Hello World.’
⇒Hello World.
echo(‘gnus’, ‘and gnats’)
error m4trace: -1- echo(‘gnus’, ‘and gnats’) -> ‘‘gnus’,‘and gnats’’
⇒gnus,and gnats

The number between dashes is the depth of the expansion. It is one most of the time,
signifying an expansion at the outermost level, but it increases when macro arguments
contain unquoted macro calls. The maximum number that will appear between dashes is
controlled by the option ‘--nesting-limit’ (see Section 2.3 [Invoking m4], page 9).

Tracing by name is an attribute that is preserved whether the macro is defined or not.
This allows the ‘-t’ option to select macros to trace before those macros are defined.

traceoff(‘foo’)
⇒
traceon(‘foo’)
⇒
foo
⇒foo
define(‘foo’, ‘bar’)
⇒
foo
error m4trace: -1- foo -> ‘bar’
⇒bar
undefine(‘foo’)
⇒
ifdef(‘foo’, ‘yes’, ‘no’)
⇒no
indir(‘foo’)
error m4:stdin:8: undefined macro ‘foo’
⇒
define(‘foo’, ‘blah’)
⇒

Chapter 7: How to debug macros and input 45

foo
error m4trace: -1- foo -> ‘blah’
⇒blah
traceoff
⇒
foo
⇒blah

Tracing even works on builtins. However, defn (see Section 5.5 [Defn], page 29) does
not transfer tracing status.

traceon(‘eval’, ‘m4_divnum’)
⇒
define(‘m4_eval’, defn(‘eval’))
⇒
define(‘m4_divnum’, defn(‘divnum’))
⇒
eval(divnum)
error m4trace: -1- eval(‘0’) -> ‘0’
⇒0
m4_eval(m4_divnum)
error m4trace: -2- m4_divnum -> ‘0’
⇒0

See Section 7.3 [Debug Levels], page 45, for information on controlling the details of the
display.

7.3 Controlling debugging output

The ‘-d’ option to m4 (or ‘--debug’, see Section 2.5 [Invoking m4], page 10) controls the
amount of details presented in three categories of output. Trace output is requested by
traceon (see Section 7.2 [Trace], page 43), and each line is prefixed by ‘m4trace:’ in
relation to a macro invocation. Debug output tracks useful events not associated with a
macro invocation, and each line is prefixed by ‘m4debug:’. Finally, dumpdef (see Section 7.1
[Dumpdef], page 43) output is affected, with no prefix added to the output lines.

The flags following the option can be one or more of the following:

a In trace output, show the actual arguments that were collected before invoking
the macro. This applies to all macro calls if the ‘t’ flag is used, otherwise only
the macros covered by calls of traceon.

c In trace output, show several trace lines for each macro call. A line is shown
when the macro is seen, but before the arguments are collected; a second line
when the arguments have been collected and a third line after the call has
completed.

e In trace output, show the expansion of each macro call, if it is not void. This
applies to all macro calls if the ‘t’ flag is used, otherwise only the macros covered
by calls of traceon.

f In debug and trace output, include the name of the current input file in the
output line.

46 GNU M4 1.4.9 macro processor

i In debug output, print a message each time the current input file is changed.

l In debug and trace output, include the current input line number in the output
line.

p In debug output, print a message when a named file is found through the path
search mechanism (see Section 9.2 [Search Path], page 60), giving the actual
file name used.

q In trace and dumpdef output, quote actual arguments and macro expansions
in the display with the current quotes. This is useful in connection with the ‘a’
and ‘e’ flags above.

t In trace output, trace all macro calls made in this invocation of m4, regardless
of the settings of traceon.

x In trace output, add a unique ‘macro call id’ to each line of the trace output.
This is useful in connection with the ‘c’ flag above.

V A shorthand for all of the above flags.

If no flags are specified with the ‘-d’ option, the default is ‘aeq’. The examples through-
out this manual assume the default flags.

There is a builtin macro debugmode, which allows on-the-fly control of the debugging
output format:

[Builtin]debugmode ([flags])
The argument flags should be a subset of the letters listed above. As special cases, if
the argument starts with a ‘+’, the flags are added to the current debug flags, and if
it starts with a ‘-’, they are removed. If no argument is present, all debugging flags
are cleared (as if no ‘-d’ was given), and with an empty argument the flags are reset
to the default of ‘aeq’.
The expansion of debugmode is void.

define(‘foo’, ‘FOO’)
⇒
traceon(‘foo’)
⇒
debugmode()
⇒
foo
error m4trace: -1- foo -> ‘FOO’
⇒FOO
debugmode
⇒
foo
error m4trace: -1- foo
⇒FOO
debugmode(‘+l’)
⇒
foo

Chapter 7: How to debug macros and input 47

error m4trace:8: -1- foo
⇒FOO

7.4 Saving debugging output

Debug and tracing output can be redirected to files using either the ‘--debugfile’ option
to m4 (see Section 2.5 [Invoking m4], page 10), or with the builtin macro debugfile:

[Builtin]debugfile ([file])
Sends all further debug and trace output to file, opened in append mode. If file
is the empty string, debug and trace output are discarded. If debugfile is called
without any arguments, debug and trace output are sent to standard error. This does
not affect warnings, error messages, or errprint output, which are always sent to
standard error. If file cannot be opened, the current debug file is unchanged, and an
error is issued.
The expansion of debugfile is void.

traceon(‘divnum’)
⇒
divnum(‘extra’)
error m4:stdin:2: Warning: excess arguments to builtin ‘divnum’ ignored
error m4trace: -1- divnum(‘extra’) -> ‘0’
⇒0
debugfile()
⇒
divnum(‘extra’)
error m4:stdin:4: Warning: excess arguments to builtin ‘divnum’ ignored
⇒0
debugfile
⇒
divnum
error m4trace: -1- divnum -> ‘0’
⇒0

48 GNU M4 1.4.9 macro processor

Chapter 8: Input control 49

8 Input control

This chapter describes various builtin macros for controlling the input to m4.

8.1 Deleting whitespace in input

The builtin dnl stands for “Discard to Next Line”:

[Builtin]dnl
All characters, up to and including the next newline, are discarded without performing
any macro expansion. A warning is issued if the end of the file is encountered without
a newline.

The expansion of dnl is void.

It is often used in connection with define, to remove the newline that follows the call
to define. Thus

define(‘foo’, ‘Macro ‘foo’.’)dnl A very simple macro, indeed.
foo
⇒Macro foo.

The input up to and including the next newline is discarded, as opposed to the way
comments are treated (see Section 3.3 [Comments], page 13).

Usually, dnl is immediately followed by an end of line or some other whitespace. GNU
m4 will produce a warning diagnostic if dnl is followed by an open parenthesis. In this
case, dnl will collect and process all arguments, looking for a matching close parenthesis.
All predictable side effects resulting from this collection will take place. dnl will return no
output. The input following the matching close parenthesis up to and including the next
newline, on whatever line containing it, will still be discarded.

dnl(‘args are ignored, but side effects occur’,
define(‘foo’, ‘like this’)) while this text is ignored: undefine(‘foo’)
error m4:stdin:1: Warning: excess arguments to builtin ‘dnl’ ignored

See how ‘foo’ was defined, foo?
⇒See how foo was defined, like this?

If the end of file is encountered without a newline character, a warning is issued and dnl
stops consuming input.

m4wrap(‘m4wrap(‘2 hi
’)0 hi dnl 1 hi’)
⇒
define(‘hi’, ‘HI’)
⇒
^D
error m4:stdin:1: Warning: end of file treated as newline
⇒0 HI 2 HI

50 GNU M4 1.4.9 macro processor

8.2 Changing the quote characters

The default quote delimiters can be changed with the builtin changequote:

[Builtin]changequote ([start = ‘‘’], [end = ‘’’])
This sets start as the new begin-quote delimiter and end as the new end-quote de-
limiter. If both arguments are missing, the default quotes (‘ and ’) are used. If start
is void, then quoting is disabled. Otherwise, if end is missing or void, the default
end-quote delimiter (’) is used. The quote delimiters can be of any length.
The expansion of changequote is void.

changequote(‘[’, ‘]’)
⇒
define([foo], [Macro [foo].])
⇒
foo
⇒Macro foo.

The quotation strings can safely contain eight-bit characters. If no single character is
appropriate, start and end can be of any length. Other implementations cap the delimiter
length to five characters, but GNU has no inherent limit.

changequote(‘[[[’, ‘]]]’)
⇒
define([[[foo]]], [[[Macro [[[[[foo]]]]].]]])
⇒
foo
⇒Macro [[foo]].

Calling changequote with start as the empty string will effectively disable the quoting
mechanism, leaving no way to quote text. However, using an empty string is not portable,
as some other implementations of m4 revert to the default quoting, while others preserve the
prior non-empty delimiter. If start is not empty, then an empty end will use the default end-
quote delimiter of ‘’’, as otherwise, it would be impossible to end a quoted string. Again,
this is not portable, as some other m4 implementations reuse start as the end-quote delimiter,
while others preserve the previous non-empty value. Omitting both arguments restores the
default begin-quote and end-quote delimiters; fortunately this behavior is portable to all
implementations of m4.

define(‘foo’, ‘Macro ‘FOO’.’)
⇒
changequote(‘’, ‘’)
⇒
foo
⇒Macro ‘FOO’.
‘foo’
⇒‘Macro ‘FOO’.’
changequote(‘,)
⇒
foo
⇒Macro FOO.

Chapter 8: Input control 51

There is no way in m4 to quote a string containing an unmatched begin-quote, except
using changequote to change the current quotes.

If the quotes should be changed from, say, ‘[’ to ‘[[’, temporary quote characters have to
be defined. To achieve this, two calls of changequote must be made, one for the temporary
quotes and one for the new quotes.

Macros are recognized in preference to the begin-quote string, so if a prefix of start can be
recognized as part of a potential macro name, the quoting mechanism is effectively disabled.
Unless you use changeword (see Section 8.4 [Changeword], page 54), this means that start
should not begin with a letter, digit, or ‘_’ (underscore). However, even though quoted
strings are not recognized, the quote characters can still be discerned in macro expansion
and in trace output.

define(‘echo’, ‘$@’)
⇒
define(‘hi’, ‘HI’)
⇒
changequote(‘q’, ‘Q’)
⇒
q hi Q hi
⇒q HI Q HI
echo(hi)
⇒qHIQ
changequote
⇒
changequote(‘-’, ‘EOF’)
⇒
- hi EOF hi
⇒ hi HI
changequote
⇒
changequote(‘1’, ‘2’)
⇒
hi1hi2
⇒hi1hi2
hi 1hi2
⇒HI hi

Quotes are recognized in preference to argument collection. In particular, if start is
a single ‘(’, then argument collection is effectively disabled. For portability with other
implementations, it is a good idea to avoid ‘(’, ‘,’, and ‘)’ as the first character in start.

define(‘echo’, ‘$#:$@:’)
⇒
define(‘hi’, ‘HI’)
⇒
changequote(‘(’,‘)’)
⇒
echo(hi)
⇒0::hi

52 GNU M4 1.4.9 macro processor

changequote
⇒
changequote(‘((’, ‘))’)
⇒
echo(hi)
⇒1:HI:
echo((hi))
⇒0::hi
changequote
⇒
changequote(‘,’, ‘)’)
⇒
echo(hi,hi)bye)
⇒1:HIhibye:

If end is a prefix of start, the end-quote will be recognized in preference to a nested
begin-quote. In particular, changing the quotes to have the same string for start and end
disables nesting of quotes. When quote nesting is disabled, it is impossible to double-quote
strings across macro expansions, so using the same string is not done very often.

define(‘hi’, ‘HI’)
⇒
changequote(‘""’, ‘"’)
⇒
""hi"""hi"
⇒hihi
""hi" ""hi"
⇒hi hi
""hi"" "hi"
⇒hi" "HI"
changequote
⇒
‘hi‘hi’hi’
⇒hi‘hi’hi
changequote(‘"’, ‘"’)
⇒
"hi"hi"hi"
⇒hiHIhi

It is an error if the end of file occurs within a quoted string.

‘hello world’
⇒hello world
‘dangling quote
^D
error m4:stdin:2: ERROR: end of file in string

8.3 Changing the comment delimiters

The default comment delimiters can be changed with the builtin macro changecom:

Chapter 8: Input control 53

[Builtin]changecom ([start], [end = ‘NL’])
This sets start as the new begin-comment delimiter and end as the new end-comment
delimiter. If both arguments are missing, or start is void, then comments are disabled.
Otherwise, if end is missing or void, the default end-comment delimiter of newline is
used. The comment delimiters can be of any length.
The expansion of changecom is void.

define(‘comment’, ‘COMMENT’)
⇒
A normal comment
⇒# A normal comment
changecom(‘/*’, ‘*/’)
⇒
Not a comment anymore
⇒# Not a COMMENT anymore
But: /* this is a comment now */ while this is not a comment
⇒But: /* this is a comment now */ while this is not a COMMENT

Note how comments are copied to the output, much as if they were quoted strings. If
you want the text inside a comment expanded, quote the begin-comment delimiter.

Calling changecom without any arguments, or with start as the empty string, will ef-
fectively disable the commenting mechanism. To restore the original comment start of ‘#’,
you must explicitly ask for it. If start is not empty, then an empty end will use the default
end-comment delimiter of newline, as otherwise, it would be impossible to end a comment.
However, this is not portable, as some other m4 implementations preserve the previous
non-empty delimiters instead.

define(‘comment’, ‘COMMENT’)
⇒
changecom
⇒
Not a comment anymore
⇒# Not a COMMENT anymore
changecom(‘#’, ‘’)
⇒
comment again
⇒# comment again

The comment strings can safely contain eight-bit characters. If no single character is
appropriate, start and end can be of any length. Other implementations cap the delimiter
length to five characters, but GNU has no inherent limit.

Comments are recognized in preference to macros. However, this is not compatible with
other implementations, where macros and even quoting takes precedence over comments,
so it may change in a future release. For portability, this means that start should not
begin with a letter, digit, or ‘_’ (underscore), and that neither the start-quote nor the
start-comment string should be a prefix of the other.

define(‘hi’, ‘HI’)
⇒
define(‘hi1hi2’, ‘hello’)

54 GNU M4 1.4.9 macro processor

⇒
changecom(‘q’, ‘Q’)
⇒
q hi Q hi
⇒q hi Q HI
changecom(‘1’, ‘2’)
⇒
hi1hi2
⇒hello
hi 1hi2
⇒HI 1hi2

Comments are recognized in preference to argument collection. In particular, if start
is a single ‘(’, then argument collection is effectively disabled. For portability with other
implementations, it is a good idea to avoid ‘(’, ‘,’, and ‘)’ as the first character in start.

define(‘echo’, ‘$#:$@:’)
⇒
define(‘hi’, ‘HI’)
⇒
changecom(‘(’,‘)’)
⇒
echo(hi)
⇒0::(hi)
changecom
⇒
changecom(‘((’, ‘))’)
⇒
echo(hi)
⇒1:HI:
echo((hi))
⇒0::((hi))
changecom(‘,’, ‘)’)
⇒
echo(hi,hi)bye)
⇒1:HI,hi)bye:

It is an error if the end of file occurs within a comment.

changecom(‘/*’, ‘*/’)
⇒
/*dangling comment
^D
error m4:stdin:2: ERROR: end of file in comment

8.4 Changing the lexical structure of words

The macro changeword and all associated functionality is experimental. It is
only available if the ‘--enable-changeword’ option was given to configure,
at GNU m4 installation time. The functionality will go away in the future, to

Chapter 8: Input control 55

be replaced by other new features that are more efficient at providing the same
capabilities. Do not rely on it. Please direct your comments about it the same
way you would do for bugs.

A file being processed by m4 is split into quoted strings, words (potential macro names)
and simple tokens (any other single character). Initially a word is defined by the following
regular expression:

[_a-zA-Z][_a-zA-Z0-9]*

Using changeword, you can change this regular expression:

[Optional builtin]changeword (regex)
Changes the regular expression for recognizing macro names to be regex. If regex is
empty, use ‘[_a-zA-Z][_a-zA-Z0-9]*’. regex must obey the constraint that every
prefix of the desired final pattern is also accepted by the regular expression. If regex
contains grouping parentheses, the macro invoked is the portion that matched the
first group, rather than the entire matching string.

The expansion of changeword is void. The macro changeword is recognized only with
parameters.

Relaxing the lexical rules of m4 might be useful (for example) if you wanted to apply
translations to a file of numbers:

ifdef(‘changeword’, ‘’, ‘errprint(‘ skipping: no changeword support
’)m4exit(‘77’)’)dnl
changeword(‘[_a-zA-Z0-9]+’)
⇒
define(‘1’, ‘0’)1
⇒0

Tightening the lexical rules is less useful, because it will generally make some of the
builtins unavailable. You could use it to prevent accidental call of builtins, for example:

ifdef(‘changeword’, ‘’, ‘errprint(‘ skipping: no changeword support
’)m4exit(‘77’)’)dnl
define(‘_indir’, defn(‘indir’))
⇒
changeword(‘_[_a-zA-Z0-9]*’)
⇒
esyscmd(‘foo’)
⇒esyscmd(foo)
_indir(‘esyscmd’, ‘echo hi’)
⇒hi
⇒

Because m4 constructs its words a character at a time, there is a restriction on the regular
expressions that may be passed to changeword. This is that if your regular expression
accepts ‘foo’, it must also accept ‘f’ and ‘fo’.

ifdef(‘changeword’, ‘’, ‘errprint(‘ skipping: no changeword support
’)m4exit(‘77’)’)dnl
define(‘foo

56 GNU M4 1.4.9 macro processor

’, ‘bar
’)
⇒
dnl This example wants to recognize changeword, dnl, and ‘foo\n’.
dnl First, we check that our regexp will match.
regexp(‘changeword’, ‘[cd][a-z]*\|foo[
]’)
⇒0
regexp(‘foo
’, ‘[cd][a-z]*\|foo[
]’)
⇒0
regexp(‘f’, ‘[cd][a-z]*\|foo[
]’)
⇒-1
foo
⇒foo
changeword(‘[cd][a-z]*\|foo[
]’)
⇒
dnl Even though ‘foo\n’ matches, we forgot to allow ‘f’.
foo
⇒foo
changeword(‘[cd][a-z]*\|fo*[
]?’)
⇒
dnl Now we can call ‘foo\n’.
foo
⇒bar

changeword has another function. If the regular expression supplied contains any
grouped subexpressions, then text outside the first of these is discarded before symbol
lookup. So:

ifdef(‘changeword’, ‘’, ‘errprint(‘ skipping: no changeword support
’)m4exit(‘77’)’)dnl
ifdef(‘__unix__’, ,

‘errprint(‘ skipping: syscmd does not have unix semantics
’)m4exit(‘77’)’)dnl
changecom(‘/*’, ‘*/’)dnl
define(‘foo’, ‘bar’)dnl
changeword(‘#\([_a-zA-Z0-9]*\)’)
⇒
#esyscmd(‘echo foo \#foo’)
⇒foo bar
⇒

m4 now requires a ‘#’ mark at the beginning of every macro invocation, so one can use
m4 to preprocess plain text without losing various words like ‘divert’.

Chapter 8: Input control 57

In m4, macro substitution is based on text, while in TEX, it is based on tokens.
changeword can throw this difference into relief. For example, here is the same idea
represented in TEX and m4. First, the TEX version:

\def\a{\message{Hello}}
\catcode‘\@=0
\catcode‘\\=12
@a
@bye
⇒Hello

Then, the m4 version:

ifdef(‘changeword’, ‘’, ‘errprint(‘ skipping: no changeword support
’)m4exit(‘77’)’)dnl
define(‘a’, ‘errprint(‘Hello’)’)dnl
changeword(‘@\([_a-zA-Z0-9]*\)’)
⇒
@a
⇒errprint(Hello)

In the TEX example, the first line defines a macro a to print the message ‘Hello’. The
second line defines @ to be usable instead of \ as an escape character. The third line defines
\ to be a normal printing character, not an escape. The fourth line invokes the macro a.
So, when TEX is run on this file, it displays the message ‘Hello’.

When the m4 example is passed through m4, it outputs ‘errprint(Hello)’. The reason
for this is that TEX does lexical analysis of macro definition when the macro is defined. m4
just stores the text, postponing the lexical analysis until the macro is used.

You should note that using changeword will slow m4 down by a factor of about seven,
once it is changed to something other than the default regular expression. You can invoke
changeword with the empty string to restore the default word definition, and regain the
parsing speed.

8.5 Saving text until end of input

It is possible to ‘save’ some text until the end of the normal input has been seen. Text can
be saved, to be read again by m4 when the normal input has been exhausted. This feature is
normally used to initiate cleanup actions before normal exit, e.g., deleting temporary files.

To save input text, use the builtin m4wrap:

[Builtin]m4wrap (string, . . .)
Stores string in a safe place, to be reread when end of input is reached. As a GNU
extension, additional arguments are concatenated with a space to the string.

The expansion of m4wrap is void. The macro m4wrap is recognized only with param-
eters.

define(‘cleanup’, ‘This is the ‘cleanup’ action.
’)
⇒
m4wrap(‘cleanup’)

58 GNU M4 1.4.9 macro processor

⇒
This is the first and last normal input line.
⇒This is the first and last normal input line.
^D
⇒This is the cleanup action.

The saved input is only reread when the end of normal input is seen, and not if m4exit
is used to exit m4.

It is safe to call m4wrap from saved text, but then the order in which the saved text is
reread is undefined. If m4wrap is not used recursively, the saved pieces of text are reread
in the opposite order in which they were saved (LIFO—last in, first out). However, this
behavior is likely to change in a future release, to match POSIX, so you should not depend
on this order.

Here is an example of implementing a factorial function using m4wrap:
define(‘f’, ‘ifelse(‘$1’, ‘0’, ‘Answer: 0!=1
’, eval(‘$1>1’), ‘0’, ‘Answer: $2$1=eval(‘$2$1’)
’, ‘m4wrap(‘f(decr(‘$1’), ‘$2$1*’)’)’)’)
⇒
f(‘10’)
⇒
^D
⇒Answer: 10*9*8*7*6*5*4*3*2*1=3628800

Invocations of m4wrap at the same recursion level are concatenated and rescanned as
usual:

define(‘aa’, ‘AA
’)
⇒
m4wrap(‘a’)m4wrap(‘a’)
⇒
^D
⇒AA

however, the transition between recursion levels behaves like an end of file condition between
two input files.

m4wrap(‘m4wrap(‘)’)len(abc’)
⇒
^D
error m4:stdin:1: ERROR: end of file in argument list

Chapter 9: File inclusion 59

9 File inclusion

m4 allows you to include named files at any point in the input.

9.1 Including named files

There are two builtin macros in m4 for including files:

[Builtin]include (file)
[Builtin]sinclude (file)

Both macros cause the file named file to be read by m4. When the end of the file is
reached, input is resumed from the previous input file.
The expansion of include and sinclude is therefore the contents of file.
If file does not exist (or cannot be read), the expansion is void, and include will fail
with an error while sinclude is silent. The empty string counts as a file that does
not exist.
The macros include and sinclude are recognized only with parameters.

include(‘none’)
error m4:stdin:1: cannot open ‘none’: No such file or directory
⇒
include()
error m4:stdin:2: cannot open ‘’: No such file or directory
⇒
sinclude(‘none’)
⇒
sinclude()
⇒

The rest of this section assumes that m4 is invoked with the ‘-I’ option (see Section 2.2
[Invoking m4], page 8) pointing to the ‘m4-1.4.9/examples’ directory shipped as part of
the GNU m4 package. The file ‘m4-1.4.9/examples/incl.m4’ in the distribution contains
the lines:

Include file start
foo
Include file end

Normally file inclusion is used to insert the contents of a file into the input stream. The
contents of the file will be read by m4 and macro calls in the file will be expanded:

define(‘foo’, ‘FOO’)
⇒
include(‘incl.m4’)
⇒Include file start
⇒FOO
⇒Include file end
⇒

The fact that include and sinclude expand to the contents of the file can be used to
define macros that operate on entire files. Here is an example, which defines ‘bar’ to expand
to the contents of ‘incl.m4’:

60 GNU M4 1.4.9 macro processor

define(‘bar’, include(‘incl.m4’))
⇒
This is ‘bar’: >>bar<<
⇒This is bar: >>Include file start
⇒foo
⇒Include file end
⇒<<

This use of include is not trivial, though, as files can contain quotes, commas, and
parentheses, which can interfere with the way the m4 parser works. GNU m4 seamlessly
concatenates the file contents with the next character, even if the included file ended in the
middle of a comment, string, or macro call. These conditions are only treated as end of file
errors if specified as input files on the command line.

In GNU m4, an alternative method of reading files is using undivert (see Section 10.2
[Undivert], page 62) on a named file.

9.2 Searching for include files

GNU m4 allows included files to be found in other directories than the current working
directory.

If the ‘--prepend-include’ or ‘-B’ command-line option was provided (see Section 2.2
[Invoking m4], page 8), those directories are searched first, in reverse order that those
options were listed on the command line. Then m4 looks in the current working directory.
Next comes the directories specified with the ‘--include’ or ‘-I’ option, in the order found
on the command line. Finally, if the M4PATH environment variable is set, it is expected to
contain a colon-separated list of directories, which will be searched in order.

If the automatic search for include-files causes trouble, the ‘p’ debug flag (see Section 7.3
[Debug Levels], page 45) can help isolate the problem.

Chapter 10: Diverting and undiverting output 61

10 Diverting and undiverting output

Diversions are a way of temporarily saving output. The output of m4 can at any time be
diverted to a temporary file, and be reinserted into the output stream, undiverted, again at
a later time.

Numbered diversions are counted from 0 upwards, diversion number 0 being the normal
output stream. The number of simultaneous diversions is limited mainly by the memory
used to describe them, because GNU m4 tries to keep diversions in memory. However, there
is a limit to the overall memory usable by all diversions taken altogether (512K, currently).
When this maximum is about to be exceeded, a temporary file is opened to receive the
contents of the biggest diversion still in memory, freeing this memory for other diversions.
When creating the temporary file, m4 honors the value of the environment variable TMPDIR,
and falls back to ‘/tmp’. So, it is theoretically possible that the number and aggregate size
of diversions is limited only by available disk space.

Diversions make it possible to generate output in a different order than the input was
read. It is possible to implement topological sorting dependencies. For example, GNU Au-
toconf makes use of diversions under the hood to ensure that the expansion of a prerequisite
macro appears in the output prior to the expansion of a dependent macro, regardless of
which order the two macros were invoked in the user’s input file.

10.1 Diverting output

Output is diverted using divert:

[Builtin]divert ([number = ‘0’])
The current diversion is changed to number. If number is left out or empty, it is
assumed to be zero. If number cannot be parsed, the diversion is unchanged.

The expansion of divert is void.

When all the m4 input will have been processed, all existing diversions are automatically
undiverted, in numerical order.

divert(‘1’)
This text is diverted.
divert
⇒
This text is not diverted.
⇒This text is not diverted.
^D
⇒
⇒This text is diverted.

Several calls of divert with the same argument do not overwrite the previous diverted
text, but append to it. Diversions are printed after any wrapped text is expanded.

define(‘text’, ‘TEXT’)
⇒
divert(‘1’)‘diverted text.’
divert

62 GNU M4 1.4.9 macro processor

⇒
m4wrap(‘Wrapped text precedes ’)
⇒
^D
⇒Wrapped TEXT precedes diverted text.

If output is diverted to a negative diversion, it is simply discarded. This can be used to
suppress unwanted output. A common example of unwanted output is the trailing newlines
after macro definitions. Here is a common programming idiom in m4 for avoiding them.

divert(‘-1’)
define(‘foo’, ‘Macro ‘foo’.’)
define(‘bar’, ‘Macro ‘bar’.’)
divert
⇒

Traditional implementations only supported ten diversions. But as a GNU extension,
diversion numbers can be as large as positive integers will allow, rather than treating a
multi-digit diversion number as a request to discard text.

divert(eval(‘1<<28’))world
divert(‘2’)hello
^D
⇒hello
⇒world

Note that divert is an English word, but also an active macro without arguments.
When processing plain text, the word might appear in normal text and be unintentionally
swallowed as a macro invocation. One way to avoid this is to use the ‘-P’ option to rename
all builtins (see Section 2.1 [Invoking m4], page 7). Another is to write a wrapper that
requires a parameter to be recognized.

We decided to divert the stream for irrigation.
⇒We decided to the stream for irrigation.
define(‘divert’, ‘ifelse(‘$#’, ‘0’, ‘‘$0’’, ‘builtin(‘$0’, $@)’)’)
⇒
divert(‘-1’)
Ignored text.
divert(‘0’)
⇒
We decided to divert the stream for irrigation.
⇒We decided to divert the stream for irrigation.

10.2 Undiverting output

Diverted text can be undiverted explicitly using the builtin undivert:

[Builtin]undivert ([diversions...])
Undiverts the numeric diversions given by the arguments, in the order given. If no
arguments are supplied, all diversions are undiverted, in numerical order.
As a GNU extension, diversions may contain non-numeric strings, which are treated
as the names of files to copy into the output without expansion. A warning is issued
if a file could not be opened.

Chapter 10: Diverting and undiverting output 63

The expansion of undivert is void.

divert(‘1’)
This text is diverted.
divert
⇒
This text is not diverted.
⇒This text is not diverted.
undivert(‘1’)
⇒
⇒This text is diverted.
⇒

Notice the last two blank lines. One of them comes from the newline following undivert,
the other from the newline that followed the divert! A diversion often starts with a blank
line like this.

When diverted text is undiverted, it is not reread by m4, but rather copied directly to
the current output, and it is therefore not an error to undivert into a diversion. Undiverting
the empty string is the same as specifying diversion 0; in either case nothing happens since
the output has already been flushed.

divert(‘1’)diverted text
divert
⇒
undivert()
⇒
undivert(‘0’)
⇒
undivert
⇒diverted text
⇒

When a diversion has been undiverted, the diverted text is discarded, and it is not
possible to bring back diverted text more than once.

divert(‘1’)
This text is diverted first.
divert(‘0’)undivert(‘1’)dnl
⇒
⇒This text is diverted first.
undivert(‘1’)
⇒
divert(‘1’)
This text is also diverted but not appended.
divert(‘0’)undivert(‘1’)dnl
⇒
⇒This text is also diverted but not appended.

Attempts to undivert the current diversion are silently ignored. Thus, when the current
diversion is not 0, the current diversion does not get rearranged among the other diversions.

divert(‘1’)one

64 GNU M4 1.4.9 macro processor

divert(‘2’)two
divert(‘3’)three
divert(‘2’)undivert‘’dnl
divert‘’undivert‘’dnl
⇒two
⇒one
⇒three

GNU m4 allows named files to be undiverted. Given a non-numeric argument, the contents
of the file named will be copied, uninterpreted, to the current output. This complements
the builtin include (see Section 9.1 [Include], page 59). To illustrate the difference, the file
‘m4-1.4.9/examples/foo’ contains the word ‘bar’:

define(‘bar’, ‘BAR’)
⇒
undivert(‘foo’)
⇒bar
⇒
include(‘foo’)
⇒BAR
⇒

If the file is not found (or cannot be read), an error message is issued, and the expansion
is void.

10.3 Diversion numbers

The current diversion is tracked by the builtin divnum:

[Builtin]divnum
Expands to the number of the current diversion.

Initial divnum
⇒Initial 0
divert(‘1’)
Diversion one: divnum
divert(‘2’)
Diversion two: divnum
^D
⇒
⇒Diversion one: 1
⇒
⇒Diversion two: 2

10.4 Discarding diverted text

Often it is not known, when output is diverted, whether the diverted text is actually needed.
Since all non-empty diversion are brought back on the main output stream when the end
of input is seen, a method of discarding a diversion is needed. If all diversions should be
discarded, the easiest is to end the input to m4 with ‘divert(‘-1’)’ followed by an explicit
‘undivert’:

Chapter 10: Diverting and undiverting output 65

divert(‘1’)
Diversion one: divnum
divert(‘2’)
Diversion two: divnum
divert(‘-1’)
undivert
^D

No output is produced at all.
Clearing selected diversions can be done with the following macro:

[Composite]cleardivert ([diversions...])
Discard the contents of each of the listed numeric diversions.

define(‘cleardivert’,
‘pushdef(‘_n’, divnum)divert(‘-1’)undivert($@)divert(_n)popdef(‘_n’)’)
⇒

It is called just like undivert, but the effect is to clear the diversions, given by the
arguments. (This macro has a nasty bug! You should try to see if you can find it and
correct it; or see Section 17.4 [Answers], page 103).

66 GNU M4 1.4.9 macro processor

Chapter 11: Macros for text handling 67

11 Macros for text handling

There are a number of builtins in m4 for manipulating text in various ways, extracting
substrings, searching, substituting, and so on.

11.1 Calculating length of strings

The length of a string can be calculated by len:

[Builtin]len (string)
Expands to the length of string, as a decimal number.

The macro len is recognized only with parameters.

len()
⇒0
len(‘abcdef’)
⇒6

11.2 Searching for substrings

Searching for substrings is done with index:

[Builtin]index (string, substring)
Expands to the index of the first occurrence of substring in string. The first character
in string has index 0. If substring does not occur in string, index expands to ‘-1’.

The macro index is recognized only with parameters.

index(‘gnus, gnats, and armadillos’, ‘nat’)
⇒7
index(‘gnus, gnats, and armadillos’, ‘dag’)
⇒-1

Omitting substring evokes a warning, but still produces output.

index(‘abc’)
error m4:stdin:1: Warning: too few arguments to builtin ‘index’
⇒0

11.3 Searching for regular expressions

Searching for regular expressions is done with the builtin regexp:

[Builtin]regexp (string, regexp, [replacement])
Searches for regexp in string. The syntax for regular expressions is the same as in
GNU Emacs, which is similar to BRE (Basic Regular Expressions) in POSIX. See
section “Syntax of Regular Expressions” in The GNU Emacs Manual. Support for
ERE (Extended Regular Expressions) is not available, but will be added in GNU M4
2.0.

If replacement is omitted, regexp expands to the index of the first match of regexp
in string. If regexp does not match anywhere in string, it expands to -1.

68 GNU M4 1.4.9 macro processor

If replacement is supplied, and there was a match, regexp changes the expansion to
this argument, with ‘\n ’ substituted by the text matched by the nth parenthesized
sub-expression of regexp, up to nine sub-expressions. The escape ‘\&’ is replaced by
the text of the entire regular expression matched. For all other characters, ‘\’ treats
the next character literally. A warning is issued if there were fewer sub-expressions
than the ‘\n ’ requested, or if there is a trailing ‘\’. If there was no match, regexp
expands to the empty string.

The macro regexp is recognized only with parameters.

regexp(‘GNUs not Unix’, ‘\<[a-z]\w+’)
⇒5
regexp(‘GNUs not Unix’, ‘\<Q\w*’)
⇒-1
regexp(‘GNUs not Unix’, ‘\w\(\w+\)$’, ‘*** \& *** \1 ***’)
⇒*** Unix *** nix ***
regexp(‘GNUs not Unix’, ‘\<Q\w*’, ‘*** \& *** \1 ***’)
⇒

Here are some more examples on the handling of backslash:

regexp(‘abc’, ‘\(b\)’, ‘\\\10\a’)
⇒\b0a
regexp(‘abc’, ‘b’, ‘\1\’)
error m4:stdin:2: Warning: sub-expression 1 not present
error m4:stdin:2: Warning: trailing \ ignored in replacement
⇒
regexp(‘abc’, ‘\(\(d\)?\)\(c\)’, ‘\1\2\3\4\5\6’)
error m4:stdin:3: Warning: sub-expression 4 not present
error m4:stdin:3: Warning: sub-expression 5 not present
error m4:stdin:3: Warning: sub-expression 6 not present
⇒c

Omitting regexp evokes a warning, but still produces output.

regexp(‘abc’)
error m4:stdin:1: Warning: too few arguments to builtin ‘regexp’
⇒0

11.4 Extracting substrings

Substrings are extracted with substr:

[Builtin]substr (string, from, [length])
Expands to the substring of string, which starts at index from, and extends for length
characters, or to the end of string, if length is omitted. The starting index of a string
is always 0. The expansion is empty if there is an error parsing from or length, if
from is beyond the end of string, or if length is negative.

The macro substr is recognized only with parameters.

substr(‘gnus, gnats, and armadillos’, ‘6’)
⇒gnats, and armadillos

Chapter 11: Macros for text handling 69

substr(‘gnus, gnats, and armadillos’, ‘6’, ‘5’)
⇒gnats

Omitting from evokes a warning, but still produces output.
substr(‘abc’)
error m4:stdin:1: Warning: too few arguments to builtin ‘substr’
⇒abc
substr(‘abc’,)
error m4:stdin:2: empty string treated as 0 in builtin ‘substr’
⇒abc

11.5 Translating characters

Character translation is done with translit:

[Builtin]translit (string, chars, [replacement])
Expands to string, with each character that occurs in chars translated into the char-
acter from replacement with the same index.
If replacement is shorter than chars, the excess characters of chars are deleted from
the expansion; if chars is shorter, the excess characters in replacement are silently
ignored. If replacement is omitted, all characters in string that are present in chars
are deleted from the expansion. If a character appears more than once in chars, only
the first instance is used in making the translation. Only a single translation pass is
made, even if characters in replacement also appear in chars.
As a GNU extension, both chars and replacement can contain character-ranges, e.g.,
‘a-z’ (meaning all lowercase letters) or ‘0-9’ (meaning all digits). To include a dash
‘-’ in chars or replacement, place it first or last in the entire string, or as the last
character of a range. Back-to-back ranges can share a common endpoint. It is not an
error for the last character in the range to be ‘larger’ than the first. In that case, the
range runs backwards, i.e., ‘9-0’ means the string ‘9876543210’. The expansion of a
range is dependent on the underlying encoding of characters, so using ranges is not
always portable between machines.
The macro translit is recognized only with parameters.

translit(‘GNUs not Unix’, ‘A-Z’)
⇒s not nix
translit(‘GNUs not Unix’, ‘a-z’, ‘A-Z’)
⇒GNUS NOT UNIX
translit(‘GNUs not Unix’, ‘A-Z’, ‘z-a’)
⇒tmfs not fnix
translit(‘+,-12345’, ‘+--1-5’, ‘<;>a-c-a’)
⇒<;>abcba
translit(‘abcdef’, ‘aabdef’, ‘bcged’)
⇒bgced

In the ascii encoding, the first example deletes all uppercase letters, the second converts
lowercase to uppercase, and the third ‘mirrors’ all uppercase letters, while converting them
to lowercase. The two first cases are by far the most common, even though they are not
portable to ebcdic or other encodings. The fourth example shows a range ending in ‘-’,

70 GNU M4 1.4.9 macro processor

as well as back-to-back ranges. The final example shows that ‘a’ is mapped to ‘b’, not ‘c’;
the resulting ‘b’ is not further remapped to ‘g’; the ‘d’ and ‘e’ are swapped, and the ‘f’ is
discarded.

Omitting chars evokes a warning, but still produces output.

translit(‘abc’)
error m4:stdin:1: Warning: too few arguments to builtin ‘translit’
⇒abc

11.6 Substituting text by regular expression

Global substitution in a string is done by patsubst:

[Builtin]patsubst (string, regexp, [replacement])
Searches string for matches of regexp, and substitutes replacement for each match.
The syntax for regular expressions is the same as in GNU Emacs (see Section 11.3
[Regexp], page 67).

The parts of string that are not covered by any match of regexp are copied to the
expansion. Whenever a match is found, the search proceeds from the end of the
match, so a character from string will never be substituted twice. If regexp matches
a string of zero length, the start position for the search is incremented, to avoid infinite
loops.

When a replacement is to be made, replacement is inserted into the expansion, with
‘\n ’ substituted by the text matched by the nth parenthesized sub-expression of
patsubst, for up to nine sub-expressions. The escape ‘\&’ is replaced by the text of
the entire regular expression matched. For all other characters, ‘\’ treats the next
character literally. A warning is issued if there were fewer sub-expressions than the
‘\n ’ requested, or if there is a trailing ‘\’.

The replacement argument can be omitted, in which case the text matched by regexp
is deleted.

The macro patsubst is recognized only with parameters.

patsubst(‘GNUs not Unix’, ‘^’, ‘OBS: ’)
⇒OBS: GNUs not Unix
patsubst(‘GNUs not Unix’, ‘\<’, ‘OBS: ’)
⇒OBS: GNUs OBS: not OBS: Unix
patsubst(‘GNUs not Unix’, ‘\w*’, ‘(\&)’)
⇒(GNUs)() (not)() (Unix)()
patsubst(‘GNUs not Unix’, ‘\w+’, ‘(\&)’)
⇒(GNUs) (not) (Unix)
patsubst(‘GNUs not Unix’, ‘[A-Z][a-z]+’)
⇒GN not
patsubst(‘GNUs not Unix’, ‘not’, ‘NOT\’)
error m4:stdin:6: Warning: trailing \ ignored in replacement
⇒GNUs NOT Unix

Here is a slightly more realistic example, which capitalizes individual words or whole
sentences, by substituting calls of the macros upcase and downcase into the strings.

Chapter 11: Macros for text handling 71

[Composite]upcase (text)
[Composite]downcase (text)
[Composite]capitalize (text)

Expand to text, but with capitalization changed: upcase changes all letters to upper
case, downcase changes all letters to lower case, and capitalize changes the first
character of each word to upper case and the remaining characters to lower case.

define(‘upcase’, ‘translit(‘$*’, ‘a-z’, ‘A-Z’)’)dnl
define(‘downcase’, ‘translit(‘$*’, ‘A-Z’, ‘a-z’)’)dnl
define(‘capitalize1’,

‘regexp(‘$1’, ‘^\(\w\)\(\w*\)’,
‘upcase(‘\1’)‘’downcase(‘\2’)’)’)dnl

define(‘capitalize’,
‘patsubst(‘$1’, ‘\w+’, ‘capitalize1(‘\&’)’)’)dnl

capitalize(‘GNUs not Unix’)
⇒Gnus Not Unix

While regexp replaces the whole input with the replacement as soon as there is a match,
patsubst replaces each occurrence of a match and preserves non-matching pieces:

define(‘patreg’,
‘patsubst($@)
regexp($@)’)dnl
patreg(‘bar foo baz Foo’, ‘foo\|Foo’, ‘FOO’)
⇒bar FOO baz FOO
⇒FOO
patreg(‘aba abb 121’, ‘\(.\)\(.\)\1’, ‘\2\1\2’)
⇒bab abb 212
⇒bab

Omitting regexp evokes a warning, but still produces output.
patsubst(‘abc’)
error m4:stdin:1: Warning: too few arguments to builtin ‘patsubst’
⇒abc

11.7 Formatting strings (printf-like)

Formatted output can be made with format:

[Builtin]format (format-string, . . .)
Works much like the C function printf. The first argument format-string can contain
‘%’ specifications which are satisfied by additional arguments, and the expansion of
format is the formatted string.
The macro format is recognized only with parameters.

Its use is best described by a few examples:
define(‘foo’, ‘The brown fox jumped over the lazy dog’)
⇒
format(‘The string "%s" uses %d characters’, foo, len(foo))
⇒The string "The brown fox jumped over the lazy dog" uses 38 characters

72 GNU M4 1.4.9 macro processor

format(‘%.0f’, ‘56789.9876’)
⇒56790
len(format(‘%-*X’, ‘300’, ‘1’))
⇒300

Using the forloop macro defined earlier (see Section 6.4 [Forloop], page 39), this example
shows how format can be used to produce tabular output.

include(‘forloop.m4’)
⇒
forloop(‘i’, ‘1’, ‘10’, ‘format(‘%6d squared is %10d
’, i, eval(i**2))’)
⇒ 1 squared is 1
⇒ 2 squared is 4
⇒ 3 squared is 9
⇒ 4 squared is 16
⇒ 5 squared is 25
⇒ 6 squared is 36
⇒ 7 squared is 49
⇒ 8 squared is 64
⇒ 9 squared is 81
⇒ 10 squared is 100
⇒

The builtin format is modeled after the ANSI C ‘printf’ function, and supports these
‘%’ specifiers: ‘c’, ‘s’, ‘d’, ‘o’, ‘x’, ‘X’, ‘u’, ‘e’, ‘E’, ‘f’, ‘F’, ‘g’, ‘G’, and ‘%’; it supports field
widths and precisions, and the modifiers ‘+’, ‘-’, ‘ ’, ‘0’, ‘#’, ‘h’ and ‘l’. For more details on
the functioning of printf, see the C Library Manual.

For now, unrecognized specifiers are silently ignored, but it is anticipated that a fu-
ture release of GNU m4 will support more specifiers, and give warnings when problems are
encountered. Likewise, escape sequences are not yet recognized.

Chapter 12: Macros for doing arithmetic 73

12 Macros for doing arithmetic

Integer arithmetic is included in m4, with a C-like syntax. As convenient shorthands, there
are builtins for simple increment and decrement operations.

12.1 Decrement and increment operators

Increment and decrement of integers are supported using the builtins incr and decr:

[Builtin]incr (number)
[Builtin]decr (number)

Expand to the numerical value of number, incremented or decremented, respectively,
by one. Except for the empty string, the expansion is empty if number could not be
parsed.
The macros incr and decr are recognized only with parameters.

incr(‘4’)
⇒5
decr(‘7’)
⇒6
incr()
error m4:stdin:3: empty string treated as 0 in builtin ‘incr’
⇒1
decr()
error m4:stdin:4: empty string treated as 0 in builtin ‘decr’
⇒-1

12.2 Evaluating integer expressions

Integer expressions are evaluated with eval:

[Builtin]eval (expression, [radix = ‘10’], [width])
Expands to the value of expression. The expansion is empty if a problem is encoun-
tered while parsing the arguments. If specified, radix and width control the format
of the output.
Calculations are done with 32-bit signed numbers. Overflow silently results in wrap-
around. A warning is issued if division by zero is attempted, or if expression could
not be parsed.
Expressions can contain the following operators, listed in order of decreasing prece-
dence.

‘()’ Parentheses

‘+ - ~ !’ Unary plus and minus, and bitwise and logical negation

‘**’ Exponentiation

‘* / %’ Multiplication, division, and modulo

‘+ -’ Addition and subtraction

‘<< >>’ Shift left or right

74 GNU M4 1.4.9 macro processor

‘> >= < <=’
Relational operators

‘== !=’ Equality operators

‘&’ Bitwise and

‘^’ Bitwise exclusive-or

‘|’ Bitwise or

‘&&’ Logical and

‘||’ Logical or

The macro eval is recognized only with parameters.

All binary operators, except exponentiation, are left associative. C operators that per-
form variable assignment, such as ‘+=’ or ‘--’, are not implemented, since eval only operates
on constants, not variables. Attempting to use them results in an error. However, since
traditional implementations treated ‘=’ as an undocumented alias for ‘==’ as opposed to
an assignment operator, this usage is supported as a special case. Be aware that a future
version of GNU M4 may support assignment semantics as an extension when POSIX mode
is not requested, and that using ‘=’ to check equality is not portable.

eval(‘2 = 2’)
error m4:stdin:1: Warning: recommend ==, not =, for equality operator
⇒1
eval(‘++0’)
error m4:stdin:2: invalid operator in eval: ++0
⇒
eval(‘0 |= 1’)
error m4:stdin:3: invalid operator in eval: 0 |= 1
⇒

Note that some older m4 implementations use ‘^’ as an alternate operator for the expo-
nentiation, although POSIX requires the C behavior of bitwise exclusive-or. The precedence
of the negation operators, ‘~’ and ‘!’, was traditionally lower than equality. The unary
operators could not be used reliably more than once on the same term without intervening
parentheses. The traditional precedence of the equality operators ‘==’ and ‘!=’ was identi-
cal instead of lower than the relational operators such as ‘<’, even through GNU M4 1.4.8.
Starting with version 1.4.9, GNU M4 correctly follows POSIX precedence rules. M4 scripts
designed to be portable between releases must be aware that parentheses may be required
to enforce C precedence rules. Likewise, division by zero, even in the unused branch of a
short-circuiting operator, is not always well-defined in other implementations.

Following are some examples where the current version of M4 follows C precedence rules,
but where older versions and some other implementations of m4 require explicit parentheses
to get the correct result:

eval(‘1 == 2 > 0’)
⇒1
eval(‘(1 == 2) > 0’)
⇒0

Chapter 12: Macros for doing arithmetic 75

eval(‘! 0 * 2’)
⇒2
eval(‘! (0 * 2)’)
⇒1
eval(‘1 | 1 ^ 1’)
⇒1
eval(‘(1 | 1) ^ 1’)
⇒0
eval(‘+ + - ~ ! ~ 0’)
⇒1
eval(‘2 || 1 / 0’)
⇒1
eval(‘0 || 1 / 0’)
error m4:stdin:9: divide by zero in eval: 0 || 1 / 0
⇒
eval(‘0 && 1 % 0’)
⇒0
eval(‘2 && 1 % 0’)
error m4:stdin:11: modulo by zero in eval: 2 && 1 % 0
⇒

As a GNU extension, the operator ‘**’ performs integral exponentiation. The operator
is right-associative, and if evaluated, the exponent must be non-negative, and at least one
of the arguments must be non-zero, or a warning is issued.

eval(‘2 ** 3 ** 2’)
⇒512
eval(‘(2 ** 3) ** 2’)
⇒64
eval(‘0 ** 1’)
⇒0
eval(‘2 ** 0’)
⇒1
eval(‘0 ** 0’)
⇒
error m4:stdin:5: divide by zero in eval: 0 ** 0

eval(‘4 ** -2’)
error m4:stdin:6: negative exponent in eval: 4 ** -2
⇒

Within expression, (but not radix or width), numbers without a special prefix are deci-
mal. A simple ‘0’ prefix introduces an octal number. ‘0x’ introduces a hexadecimal number.
As GNU extensions, ‘0b’ introduces a binary number. ‘0r’ introduces a number expressed
in any radix between 1 and 36: the prefix should be immediately followed by the decimal
expression of the radix, a colon, then the digits making the number. For radix 1, leading
zeros are ignored, and all remaining digits must be ‘1’; for all other radices, the digits are
‘0’, ‘1’, ‘2’, Beyond ‘9’, the digits are ‘a’, ‘b’ . . . up to ‘z’. Lower and upper case
letters can be used interchangeably in numbers prefixes and as number digits.

76 GNU M4 1.4.9 macro processor

Parentheses may be used to group subexpressions whenever needed. For the relational
operators, a true relation returns 1, and a false relation return 0.

Here are a few examples of use of eval.
eval(‘-3 * 5’)
⇒-15
eval(index(‘Hello world’, ‘llo’) >= 0)
⇒1
eval(‘0r1:0111 + 0b100 + 0r3:12’)
⇒12
define(‘square’, ‘eval(‘($1) ** 2’)’)
⇒
square(‘9’)
⇒81
square(square(‘5’)‘ + 1’)
⇒676
define(‘foo’, ‘666’)
⇒
eval(‘foo / 6’)
error m4:stdin:8: bad expression in eval: foo / 6
⇒
eval(foo / 6)
⇒111

As the last two lines show, eval does not handle macro names, even if they expand to
a valid expression (or part of a valid expression). Therefore all macros must be expanded
before they are passed to eval.

Some calculations are not portable to other implementations, since they have undefined
semantics in C, but GNU m4 has well-defined behavior on overflow. When shifting, an out-
of-range shift amount is implicitly brought into the range of 32-bit signed integers using an
implicit bit-wise and with 0x1f).

define(‘max_int’, eval(‘0x7fffffff’))
⇒
define(‘min_int’, incr(max_int))
⇒
eval(min_int‘ < 0’)
⇒1
eval(max_int‘ > 0’)
⇒1
ifelse(eval(min_int‘ / -1’), min_int, ‘overflow occurred’)
⇒overflow occurred
min_int
⇒-2147483648
eval(‘0x80000000 % -1’)
⇒0
eval(‘-4 >> 1’)
⇒-2
eval(‘-4 >> 33’)

Chapter 12: Macros for doing arithmetic 77

⇒-2

If radix is specified, it specifies the radix to be used in the expansion. The default radix
is 10; this is also the case if radix is the empty string. A warning results if the radix is
outside the range of 1 through 36, inclusive. The result of eval is always taken to be signed.
No radix prefix is output, and for radices greater than 10, the digits are lower case. The
width argument specifies the minimum output width, excluding any negative sign. The
result is zero-padded to extend the expansion to the requested width. A warning results if
the width is negative. If radix or width is out of bounds, the expansion of eval is empty.

eval(‘666’, ‘10’)
⇒666
eval(‘666’, ‘11’)
⇒556
eval(‘666’, ‘6’)
⇒3030
eval(‘666’, ‘6’, ‘10’)
⇒0000003030
eval(‘-666’, ‘6’, ‘10’)
⇒-0000003030
eval(‘10’, ‘’, ‘0’)
⇒10
‘0r1:’eval(‘10’, ‘1’, ‘11’)
⇒0r1:01111111111
eval(‘10’, ‘16’)
⇒a
eval(‘1’, ‘37’)
error m4:stdin:9: radix 37 in builtin ‘eval’ out of range
⇒
eval(‘1’, , ‘-1’)
error m4:stdin:10: negative width to builtin ‘eval’
⇒
eval()
error m4:stdin:11: empty string treated as 0 in builtin ‘eval’
⇒0

78 GNU M4 1.4.9 macro processor

Chapter 13: Macros for running shell commands 79

13 Macros for running shell commands

There are a few builtin macros in m4 that allow you to run shell commands from within m4.
Note that the definition of a valid shell command is system dependent. On UNIX

systems, this is the typical /bin/sh. But on other systems, such as native Windows, the
shell has a different syntax of commands that it understands. Some examples in this chapter
assume /bin/sh, and also demonstrate how to quit early with a known exit value if this is
not the case.

13.1 Determining the platform

Sometimes it is desirable for an input file to know which platform m4 is running on. GNU
m4 provides several macros that are predefined to expand to the empty string; checking for
their existence will confirm platform details.

[Optional builtin]__gnu__
[Optional builtin]__os2__
[Optional builtin]os2
[Optional builtin]__unix__
[Optional builtin]unix
[Optional builtin]__windows__
[Optional builtin]windows

Each of these macros is conditionally defined as needed to describe the environment
of m4. If defined, each macro expands to the empty string.

When GNU extensions are in effect (that is, when you did not use the ‘-G’ option, see
Section 2.3 [Invoking m4], page 9), GNU m4 will define the macro __gnu__ to expand to the
empty string.

__gnu__
⇒
ifdef(‘__gnu__’, ‘Extensions are active’)
⇒Extensions are active

On UNIX systems, GNU m4 will define __unix__ by default, or unix when the ‘-G’ option
is specified.

On native Windows systems, GNU m4 will define __windows__ by default, or windows
when the ‘-G’ option is specified.

On OS/2 systems, GNU m4 will define __os2__ by default, or os2 when the ‘-G’ option
is specified.

If GNU m4 does not provide a platform macro for your system, please report that as a
bug.

define(‘provided’, ‘0’)
⇒
ifdef(‘__unix__’, ‘define(‘provided’, incr(provided))’)
⇒
ifdef(‘__windows__’, ‘define(‘provided’, incr(provided))’)
⇒

80 GNU M4 1.4.9 macro processor

ifdef(‘__os2__’, ‘define(‘provided’, incr(provided))’)
⇒
provided
⇒1

13.2 Executing simple commands

Any shell command can be executed, using syscmd:

[Builtin]syscmd (shell-command)
Executes shell-command as a shell command.
The expansion of syscmd is void, not the output from shell-command! Output or
error messages from shell-command are not read by m4. See Section 13.3 [Esyscmd],
page 80, if you need to process the command output.
Prior to executing the command, m4 flushes its buffers. The default standard input,
output and error of shell-command are the same as those of m4.
The macro syscmd is recognized only with parameters.

define(‘foo’, ‘FOO’)
⇒
syscmd(‘echo foo’)
⇒foo
⇒

Note how the expansion of syscmd keeps the trailing newline of the command, as well
as using the newline that appeared after the macro.

As an example of shell-command using the same standard input as m4, the command
line echo "m4wrap(\‘syscmd(\‘cat’)’)" | m4 will tell m4 to read all of its input before
executing the wrapped text, then hand a valid (albeit emptied) pipe as standard input for
the cat subcommand. Therefore, you should be careful when using standard input (either
by specifying no files, or by passing ‘-’ as a file name on the command line, see Section 2.6
[Invoking m4], page 11), and also invoking subcommands via syscmd or esyscmd that
consume data from standard input. When standard input is a seekable file, the subprocess
will pick up with the next character not yet processed by m4; when it is a pipe or other
non-seekable file, there is no guarantee how much data will already be buffered by m4 and
thus unavailable to the child.

13.3 Reading the output of commands

If you want m4 to read the output of a shell command, use esyscmd:

[Builtin]esyscmd (shell-command)
Expands to the standard output of the shell command shell-command.
Prior to executing the command, m4 flushes its buffers. The default standard input
and standard error of shell-command are the same as those of m4. The error output
of shell-command is not a part of the expansion: it will appear along with the error
output of m4.
The macro esyscmd is recognized only with parameters.

Chapter 13: Macros for running shell commands 81

define(‘foo’, ‘FOO’)
⇒
esyscmd(‘echo foo’)
⇒FOO
⇒

Note how the expansion of esyscmd keeps the trailing newline of the command, as well
as using the newline that appeared after the macro.

Just as with syscmd, care must be exercised when sharing standard input between m4
and the child process of esyscmd.

13.4 Exit status

To see whether a shell command succeeded, use sysval:

[Builtin]sysval
Expands to the exit status of the last shell command run with syscmd or esyscmd.
Expands to 0 if no command has been run yet.

sysval
⇒0
syscmd(‘false’)
⇒
ifelse(sysval, ‘0’, ‘zero’, ‘non-zero’)
⇒non-zero
syscmd(‘exit 2’)
⇒
sysval
⇒2
syscmd(‘true’)
⇒
sysval
⇒0
esyscmd(‘false’)
⇒
ifelse(sysval, ‘0’, ‘zero’, ‘non-zero’)
⇒non-zero
esyscmd(‘exit 2’)
⇒
sysval
⇒2
esyscmd(‘true’)
⇒
sysval
⇒0

sysval results in 127 if there was a problem executing the command, for example, if the
system-imposed argument length is exceeded, or if there were not enough resources to fork.
It is not possible to distinguish between failed execution and successful execution that had
an exit status of 127.

82 GNU M4 1.4.9 macro processor

On UNIX platforms, where it is possible to detect when command execution is termi-
nated by a signal, rather than a normal exit, the result is the signal number shifted left by
eight bits.

dnl This test assumes kill is a shell builtin, and that signals are
dnl recognizable.
ifdef(‘__unix__’, ,

‘errprint(‘ skipping: syscmd does not have unix semantics
’)m4exit(‘77’)’)dnl
syscmd(‘kill -9 $$’)
⇒
sysval
⇒2304
syscmd()
⇒
sysval
⇒0
esyscmd(‘kill -9 $$’)
⇒
sysval
⇒2304

13.5 Making temporary files

Commands specified to syscmd or esyscmd might need a temporary file, for output or for
some other purpose. There is a builtin macro, mkstemp, for making a temporary file:

[Builtin]mkstemp (template)
[Builtin]maketemp (template)

Expands to a name of a new, empty file, made from the string template, which should
end with the string ‘XXXXXX’. The six ‘X’ characters are then replaced with random
characters matching the regular expression ‘[a-zA-Z0-9._-]’, in order to make the
file name unique. If fewer than six ‘X’ characters are found at the end of template, the
result will be longer than the template. The created file will have access permissions
as if by chmod =rw,go=, meaning that the current umask of the m4 process is taken
into account, and at most only the current user can read and write the file.
The traditional behavior, standardized by POSIX, is that maketemp merely replaces
the trailing ‘X’ with the process id, without creating a file, and without ensuring that
the resulting string is a unique file name. In part, this means that using the same
template twice in the same input file will result in the same expansion. This behavior
is a security hole, as it is very easy for another process to guess the name that will be
generated, and thus interfere with a subsequent use of syscmd trying to manipulate
that file name. Hence, POSIX has recommended that all new implementations of m4
provide the secure mkstemp builtin, and that users of m4 check for its existence.
The expansion is void and an error issued if a temporary file could not be created.
The macros mkstemp and maketemp are recognized only with parameters.

If you try this next example, you will most likely get different output for the two file
names, since the replacement characters are randomly chosen:

Chapter 13: Macros for running shell commands 83

maketemp(‘/tmp/fooXXXXXX’)
⇒/tmp/fooa07346
ifdef(‘mkstemp’, ‘define(‘maketemp’, defn(‘mkstemp’))’,

‘define(‘mkstemp’, defn(‘maketemp’))dnl
errprint(‘warning: potentially insecure maketemp implementation
’)’)
⇒
mkstemp(‘doc’)
⇒docQv83Uw

Unless you use the ‘--traditional’ command line option (or ‘-G’, see Section 2.3 [In-
voking m4], page 9), the GNU version of maketemp is secure. This means that using the
same template to multiple calls will generate multiple files. However, we recommend that
you use the new mkstemp macro, introduced in GNU M4 1.4.8, which is secure even in
traditional mode.

syscmd(‘echo foo??????’)dnl
⇒foo??????
define(‘file1’, maketemp(‘fooXXXXXX’))dnl
ifelse(esyscmd(‘echo foo??????’), ‘foo??????’, ‘no file’, ‘created’)
⇒created
define(‘file2’, maketemp(‘fooXX’))dnl
define(‘file3’, mkstemp(‘fooXXXXXX’))dnl
ifelse(len(file1), len(file2), ‘same length’, ‘different’)
⇒same length
ifelse(file1, file2, ‘same’, ‘different file’)
⇒different file
ifelse(file2, file3, ‘same’, ‘different file’)
⇒different file
ifelse(file1, file3, ‘same’, ‘different file’)
⇒different file
syscmd(‘rm ’file1 file2 file3)
⇒
sysval
⇒0

84 GNU M4 1.4.9 macro processor

Chapter 14: Miscellaneous builtin macros 85

14 Miscellaneous builtin macros

This chapter describes various builtins, that do not really belong in any of the previous
chapters.

14.1 Printing error messages

You can print error messages using errprint:

[Builtin]errprint (message, . . .)
Prints message and the rest of the arguments to standard error, separated by spa-
ces. Standard error is used, regardless of the ‘--debugfile’ option (see Section 2.5
[Invoking m4], page 10).
The expansion of errprint is void. The macro errprint is recognized only with
parameters.

errprint(‘Invalid arguments to forloop
’)
error Invalid arguments to forloop
⇒
errprint(‘1’)errprint(‘2’,‘3
’)
error 12 3
⇒

A trailing newline is not printed automatically, so it should be supplied as part of the
argument, as in the example. Unfortunately, the exact output of errprint is not very
portable to other m4 implementations: POSIX requires that all arguments be printed, but
some implementations of m4 only print the first. Furthermore, some BSD implementations
always append a newline for each errprint call, regardless of whether the last argument
already had one, and POSIX is silent on whether this is acceptable.

14.2 Printing current location

To make it possible to specify the location of an error, three utility builtins exist:

[Builtin]__file__
[Builtin]__line__
[Builtin]__program__

Expand to the quoted name of the current input file, the current input line number
in that file, and the quoted name of the current invocation of m4.

errprint(__program__:__file__:__line__: ‘input error
’)
error m4:stdin:1: input error
⇒

Line numbers start at 1 for each file. If the file was found due to the ‘-I’ option
or M4PATH environment variable, that is reflected in the file name. The syncline option
(‘-s’, see Section 2.2 [Invoking m4], page 8), and the ‘f’ and ‘l’ flags of debugmode (see
Section 7.3 [Debug Levels], page 45), also use this notion of current file and line. Redefining

86 GNU M4 1.4.9 macro processor

the three location macros has no effect on syncline, debug, or warning message output.
Assume this example is run in the ‘m4-1.4.9/checks’ directory of the GNU M4 package,
using ‘--include=../examples’ in the command line to find the file ‘incl.m4’ mentioned
earlier:

define(‘foo’, ‘‘$0’ called at __file__:__line__’)
⇒
foo
⇒foo called at stdin:2
include(‘incl.m4’)
⇒Include file start
⇒foo called at ../examples/incl.m4:2
⇒Include file end
⇒

The location of macros invoked during the rescanning of macro expansion text corre-
sponds to the location in the file where the expansion was triggered, regardless of how many
newline characters the expansion text contains. As of GNU M4 1.4.8, the location of text
wrapped with m4wrap (see Section 8.5 [M4wrap], page 57) is the point at which the m4wrap
was invoked. Previous versions, however, behaved as though wrapped text came from line
0 of the file “”.

define(‘echo’, ‘$@’)
⇒
define(‘foo’, ‘echo(__line__
__line__)’)
⇒
echo(__line__
__line__)
⇒4
⇒5
m4wrap(‘foo
’)
⇒
foo(errprint(__line__
__line__
))
error 8
error 9
⇒8
⇒8
__line__
⇒11
^D
⇒6
⇒6

The __program__ macro behaves like ‘$0’ in shell terminology. If you invoke m4 through
an absolute path or a link with a different spelling, rather than by relying on a PATH search
for plain ‘m4’, it will affect how __program__ expands. The intent is that you can use it to

Chapter 14: Miscellaneous builtin macros 87

produce error messages with the same formatting that m4 produces internally. It can also
be used within syscmd (see Section 13.2 [Syscmd], page 80) to pick the same version of m4
that is currently running, rather than whatever version of m4 happens to be first in PATH.
It was first introduced in GNU M4 1.4.6.

14.3 Exiting from m4

If you need to exit from m4 before the entire input has been read, you can use m4exit:

[Builtin]m4exit ([code = ‘0’])
Causes m4 to exit, with exit status code. If code is left out, the exit status is zero. If
code cannot be parsed, or is outside the range of 0 to 255, the exit status is one. No
further input is read, and all wrapped and diverted text is discarded.

m4wrap(‘This text is lost due to ‘m4exit’.’)
⇒
divert(‘1’) So is this.
divert
⇒
m4exit And this is never read.

A common use of this is to abort processing:

[Composite]fatal_error (message)
Abort processing with an error message and non-zero status. Prefix message with
details about where the error occurred, and print the resulting string to standard
error.

define(‘fatal_error’,
‘errprint(__program__:__file__:__line__‘: fatal error: $*

’)m4exit(‘1’)’)
⇒
fatal_error(‘this is a BAD one, buster’)
error m4:stdin:4: fatal error: this is a BAD one, buster

After this macro call, m4 will exit with exit status 1. This macro is only intended for
error exits, since the normal exit procedures are not followed, e.g., diverted text is not
undiverted, and saved text (see Section 8.5 [M4wrap], page 57) is not reread. (This macro
could be made more robust to earlier versions of m4. You should try to see if you can find
weaknesses and correct them; or see Section 17.5 [Answers], page 104).

Note that it is still possible for the exit status to be different than what was requested
by m4exit. If m4 detects some other error, such as a write error on standard output, the
exit status will be non-zero even if m4exit requested zero.

If standard input is seekable, then the file will be positioned at the next unread character.
If it is a pipe or other non-seekable file, then there are no guarantees how much data m4
might have read into buffers, and thus discarded.

88 GNU M4 1.4.9 macro processor

Chapter 15: Fast loading of frozen state 89

15 Fast loading of frozen state

Some bigger m4 applications may be built over a common base containing hundreds of
definitions and other costly initializations. Usually, the common base is kept in one or more
declarative files, which files are listed on each m4 invocation prior to the user’s input file, or
else each input file uses include.

Reading the common base of a big application, over and over again, may be time con-
suming. GNU m4 offers some machinery to speed up the start of an application using lengthy
common bases.

15.1 Using frozen files

Suppose a user has a library of m4 initializations in ‘base.m4’, which is then used with
multiple input files:

m4 base.m4 input1.m4
m4 base.m4 input2.m4
m4 base.m4 input3.m4

Rather than spending time parsing the fixed contents of ‘base.m4’ every time, the user
might rather execute:

m4 -F base.m4f base.m4

once, and further execute, as often as needed:
m4 -R base.m4f input1.m4
m4 -R base.m4f input2.m4
m4 -R base.m4f input3.m4

with the varying input. The first call, containing the ‘-F’ option, only reads and executes file
‘base.m4’, defining various application macros and computing other initializations. Once
the input file ‘base.m4’ has been completely processed, GNU m4 produces in ‘base.m4f’ a
frozen file, that is, a file which contains a kind of snapshot of the m4 internal state.

Later calls, containing the ‘-R’ option, are able to reload the internal state of m4, from
‘base.m4f’, prior to reading any other input files. This means instead of starting with a
virgin copy of m4, input will be read after having effectively recovered the effect of a prior
run. In our example, the effect is the same as if file ‘base.m4’ has been read anew. However,
this effect is achieved a lot faster.

Only one frozen file may be created or read in any one m4 invocation. It is not possible
to recover two frozen files at once. However, frozen files may be updated incrementally,
through using ‘-R’ and ‘-F’ options simultaneously. For example, if some care is taken, the
command:

m4 file1.m4 file2.m4 file3.m4 file4.m4

could be broken down in the following sequence, accumulating the same output:
m4 -F file1.m4f file1.m4
m4 -R file1.m4f -F file2.m4f file2.m4
m4 -R file2.m4f -F file3.m4f file3.m4
m4 -R file3.m4f file4.m4

Some care is necessary because not every effort has been made for this to work in all
cases. In particular, the trace attribute of macros is not handled, nor the current setting

90 GNU M4 1.4.9 macro processor

of changeword. Currently, m4wrap and sysval also have problems. Also, interactions
for some options of m4, being used in one call and not in the next, have not been fully
analyzed yet. On the other end, you may be confident that stacks of pushdef definitions
are handled correctly, as well as undefined or renamed builtins, and changed strings for
quotes or comments. And future releases of GNU M4 will improve on the utility of frozen
files.

When an m4 run is to be frozen, the automatic undiversion which takes place at end of
execution is inhibited. Instead, all positively numbered diversions are saved into the frozen
file. The active diversion number is also transmitted.

A frozen file to be reloaded need not reside in the current directory. It is looked up the
same way as an include file (see Section 9.2 [Search Path], page 60).

If the frozen file was generated with a newer version of m4, and contains directives that
an older m4 cannot parse, attempting to load the frozen file with option ‘-R’ will cause m4
to exit with status 63 to indicate version mismatch.

15.2 Frozen file format

Frozen files are sharable across architectures. It is safe to write a frozen file on one machine
and read it on another, given that the second machine uses the same or newer version of
GNU m4. It is conventional, but not required, to give a frozen file the suffix of .m4f.

These are simple (editable) text files, made up of directives, each starting with a capital
letter and ending with a newline (NL). Wherever a directive is expected, the character ‘#’
introduces a comment line; empty lines are also ignored if they are not part of an embedded
string. In the following descriptions, each len refers to the length of the corresponding
strings str in the next line of input. Numbers are always expressed in decimal. There are
no escape characters. The directives are:

C len1 , len2 NL str1 str2 NL
Uses str1 and str2 as the begin-comment and end-comment strings. If omitted,
then ‘#’ and NL are the comment delimiters.

D number, len NL str NL
Selects diversion number, making it current, then copy str in the current di-
version. number may be a negative number for a non-existing diversion. To
merely specify an active selection, use this command with an empty str. With
0 as the diversion number, str will be issued on standard output at reload time.
GNU m4 will not produce the ‘D’ directive with non-zero length for diversion 0,
but this can be done with manual edits. This directive may appear more than
once for the same diversion, in which case the diversion is the concatenation of
the various uses. If omitted, then diversion 0 is current.

F len1 , len2 NL str1 str2 NL
Defines, through pushdef, a definition for str1 expanding to the function whose
builtin name is str2. If the builtin does not exist (for example, if the frozen
file was produced by a copy of m4 compiled with changeword support, but the
version of m4 reloading was compiled without it), the reload is silent, but any
subsequent use of the definition of str1 will result in a warning. This directive
may appear more than once for the same name, and its order, along with ‘T’,
is important. If omitted, you will have no access to any builtins.

Chapter 15: Fast loading of frozen state 91

Q len1 , len2 NL str1 str2 NL
Uses str1 and str2 as the begin-quote and end-quote strings. If omitted, then
‘‘’ and ‘’’ are the quote delimiters.

T len1 , len2 NL str1 str2 NL
Defines, though pushdef, a definition for str1 expanding to the text given by
str2. This directive may appear more than once for the same name, and its
order, along with ‘F’, is important.

V number NL
Confirms the format of the file. m4 1.4.9 only creates and understands frozen
files where number is 1. This directive must be the first non-comment in the
file, and may not appear more than once.

92 GNU M4 1.4.9 macro processor

Chapter 16: Compatibility with other versions of m4 93

16 Compatibility with other versions of m4

This chapter describes the differences between this implementation of m4, and the imple-
mentation found under UNIX, notably System V, Release 3.

There are also differences in BSD flavors of m4. No attempt is made to summarize these
here.

16.1 Extensions in GNU m4

This version of m4 contains a few facilities that do not exist in System V m4. These extra
facilities are all suppressed by using the ‘-G’ command line option (see Section 2.3 [Invoking
m4], page 9), unless overridden by other command line options.
• In the $n notation for macro arguments, n can contain several digits, while the System

V m4 only accepts one digit. This allows macros in GNU m4 to take any number of
arguments, and not only nine (see Section 5.2 [Arguments], page 24).
This means that define(‘foo’, ‘$11’) is ambiguous between implementations. To
portably choose between grabbing the first parameter and appending 1 to the expan-
sion, or grabbing the eleventh parameter, you can do the following:

define(‘a1’, ‘A1’)
⇒
dnl First argument, concatenated with 1
define(‘_1’, ‘$1’)define(‘first1’, ‘_1($@)1’)
⇒
dnl Eleventh argument, portable
define(‘_9’, ‘$9’)define(‘eleventh’, ‘_9(shift(shift($@)))’)
⇒
dnl Eleventh argument, GNU style
define(‘Eleventh’, ‘$11’)
⇒
first1(‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’, ‘k’)
⇒A1
eleventh(‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’, ‘k’)
⇒k
Eleventh(‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’, ‘k’)
⇒k

Also see the argn macro (see Section 6.3 [Shift], page 37).
• The divert (see Section 10.1 [Divert], page 61) macro can manage more than 9 diver-

sions. GNU m4 treats all positive numbers as valid diversions, rather than discarding
diversions greater than 9.

• Files included with include and sinclude are sought in a user specified search path,
if they are not found in the working directory. The search path is specified by the ‘-I’
option and the M4PATH environment variable (see Section 9.2 [Search Path], page 60).

• Arguments to undivert can be non-numeric, in which case the named file will be
included uninterpreted in the output (see Section 10.2 [Undivert], page 62).

• Formatted output is supported through the format builtin, which is modeled after the
C library function printf (see Section 11.7 [Format], page 71).

94 GNU M4 1.4.9 macro processor

• Searches and text substitution through basic regular expressions are supported by the
regexp (see Section 11.3 [Regexp], page 67) and patsubst (see Section 11.6 [Patsubst],
page 70) builtins.

• The output of shell commands can be read into m4 with esyscmd (see Section 13.3
[Esyscmd], page 80).

• There is indirect access to any builtin macro with builtin (see Section 5.8 [Builtin],
page 33).

• Macros can be called indirectly through indir (see Section 5.7 [Indir], page 32).
• The name of the program, the current input file, and the current input line number are

accessible through the builtins __program__, __file__, and __line__ (see Section 14.2
[Location], page 85).

• The format of the output from dumpdef and macro tracing can be controlled with
debugmode (see Section 7.3 [Debug Levels], page 45).

• The destination of trace and debug output can be controlled with debugfile (see
Section 7.4 [Debug Output], page 47).

• The maketemp (see Section 13.5 [Mkstemp], page 82) macro behaves like mkstemp,
creating a new file with a unique name on every invocation, rather than following the
insecure behavior of replacing the trailing ‘X’ characters with the m4 process id.

In addition to the above extensions, GNU m4 implements the following command line
options: ‘-F’, ‘-G’, ‘-I’, ‘-L’, ‘-R’, ‘-V’, ‘-W’, ‘-d’, ‘-i’, ‘-l’, ‘--debugfile’ and ‘-t’. See
Chapter 2 [Invoking m4], page 7, for a description of these options.

Also, the debugging and tracing facilities in GNU m4 are much more extensive than in
most other versions of m4.

16.2 Facilities in System V m4 not in GNU m4

The version of m4 from System V contains a few facilities that have not been implemented in
GNU m4 yet. Additionally, POSIX requires some behaviors that GNU m4 has not implemented
yet. Relying on these behaviors is non-portable, as a future release of GNU m4 may change.
• System V m4 supports multiple arguments to defn, and POSIX requires it. This is

not yet implemented in GNU m4. Unfortunately, this means it is not possible to mix
builtins and other text into a single macro; a helper macro is required.

• POSIX requires an application to exit with non-zero status if it wrote an error message
to stderr. This has not yet been consistently implemented for the various builtins that
are required to issue an error (such as include (see Section 9.1 [Include], page 59) when
a file is unreadable, eval (see Section 12.2 [Eval], page 73) when an argument cannot
be parsed, or using m4exit (see Section 14.3 [M4exit], page 87) with a non-numeric
argument).

• Some traditional implementations only allow reading standard input once, but GNU m4
correctly handles multiple instances of ‘-’ on the command line.

• POSIX requires m4wrap (see Section 8.5 [M4wrap], page 57) to act in FIFO (first-in,
first-out) order, but GNU m4 currently uses LIFO order. Furthermore, POSIX states
that only the first argument to m4wrap is saved for later evaluation, bug GNU m4 saves
and processes all arguments, with output separated by spaces.

Chapter 16: Compatibility with other versions of m4 95

However, it is possible to emulate POSIX behavior by including the file ‘m4-1.4.9/
examples/wrapfifo.m4’ from the distribution:

undivert(‘wrapfifo.m4’)dnl
⇒dnl Redefine m4wrap to have FIFO semantics.
⇒define(‘_m4wrap_level’, ‘0’)dnl
⇒define(‘m4wrap’,
⇒‘ifdef(‘m4wrap’_m4wrap_level,
⇒ ‘define(‘m4wrap’_m4wrap_level,
⇒ defn(‘m4wrap’_m4wrap_level)‘$1’)’,
⇒ ‘builtin(‘m4wrap’, ‘define(‘_m4wrap_level’,
⇒ incr(_m4wrap_level))dnl
⇒m4wrap’_m4wrap_level)dnl
⇒define(‘m4wrap’_m4wrap_level, ‘$1’)’)’)dnl
include(‘wrapfifo.m4’)
⇒
m4wrap(‘a‘’m4wrap(‘c
’, ‘d’)’)m4wrap(‘b’)
⇒
^D
⇒abc

• POSIX states that builtins that require arguments, but are called without arguments,
have undefined behavior. Traditional implementations simply behave as though empty
strings had been passed. For example, a‘’define‘’b would expand to ab. But GNU
m4 ignores certain builtins if they have missing arguments, giving adefineb for the
above example.

• Traditional implementations handle define(‘f’,‘1’) (see Section 5.1 [Define],
page 23) by undefining the entire stack of previous definitions, and if doing
undefine(‘f’) first. GNU m4 replaces just the top definition on the stack, as if doing
popdef(‘f’) followed by pushdef(‘f’,‘1’). POSIX allows either behavior.

• POSIX requires syscmd (see Section 13.2 [Syscmd], page 80) to evaluate command
output for macro expansion, but this appears to be a mistake in POSIX since traditional
implementations did not do this. GNU m4 follows traditional behavior in syscmd, and
provides the extension esyscmd that provides the POSIX semantics.

• At one point, POSIX required changequote(arg) (see Section 8.2 [Changequote],
page 50) to use newline as the close quote, but this was a bug, and the next ver-
sion of POSIX is anticipated to state that using empty strings or just one argument is
unspecified. Meanwhile, the GNU m4 behavior of treating an empty end-quote delim-
iter as ‘’’ is not portable, as Solaris treats it as repeating the start-quote delimiter,
and BSD treats it as leaving the previous end-quote delimiter unchanged. For pre-
dictable results, never call changequote with just one argument, or with empty strings
for arguments.

• At one point, POSIX required changecom(arg,) (see Section 8.3 [Changecom], page 52)
to make it impossible to end a comment, but this is a bug, and the next version of
POSIX is anticipated to state that using empty strings is unspecified. Meanwhile,
the GNU m4 behavior of treating an empty end-comment delimiter as newline is not
portable, as BSD treats it as leaving the previous end-comment delimiter unchanged.

96 GNU M4 1.4.9 macro processor

It is also impossible in BSD implementations to disable comments, even though that
is required by POSIX. For predictable results, never call changecom with empty strings
for arguments.

• Most implementations of m4 give macros a higher precedence than comments when pars-
ing, meaning that if the start delimiter given to changecom (see Section 8.3 [Change-
com], page 52) starts with a macro name, comments are effectively disabled. POSIX
does not specify what the precedence is, so the GNU m4 parser recognizes comments,
then macros, then quoted strings.

• Traditional implementations allow argument collection, but not string and comment
processing, to span file boundaries. Thus, if ‘a.m4’ contains ‘len(’, and ‘b.m4’ contains
‘abc)’, m4 a.m4 b.m4 outputs ‘3’ with traditional m4, but gives an error message that
the end of file was encountered inside a macro with GNU m4. On the other hand,
traditional implementations do end of file processing for files included with include or
sinclude (see Section 9.1 [Include], page 59), while GNU m4 seamlessly integrates the
content of those files. Thus include(‘a.m4’)include(‘b.m4’) will output ‘3’ instead
of giving an error.

• Traditional m4 treats traceon (see Section 7.2 [Trace], page 43) without arguments as a
global variable, independent of named macro tracing. Also, once a macro is undefined,
named tracing of that macro is lost. On the other hand, when GNU m4 encounters
traceon without arguments, it turns tracing on for all existing definitions at the time,
but does not trace future definitions; traceoff without arguments turns tracing off
for all definitions regardless of whether they were also traced by name; and tracing by
name, such as with ‘-tfoo’ at the command line or traceon(‘foo’) in the input, is
an attribute that is preserved even if the macro is currently undefined.

• POSIX requires eval (see Section 12.2 [Eval], page 73) to treat all operators with the
same precedence as C. However, earlier versions of GNU m4 followed the traditional
behavior of other m4 implementations, where bitwise and logical negation (‘~’ and
‘!’) have lower precedence than equality operators; and where equality operators (‘==’
and ‘!=’) had the same precedence as relational operators (such as ‘<’). Use explicit
parentheses to ensure proper precedence. As extensions to POSIX, GNU m4 gives well-
defined semantics to operations that C leaves undefined, such as when overflow occurs,
when shifting negative numbers, or when performing division by zero. POSIX also
requires ‘=’ to cause an error, but many traditional implementations allowed it as an
alias for ‘==’.

• POSIX requires translit (see Section 11.5 [Translit], page 69) to treat each character
of the second and third arguments literally, but GNU m4 treats ‘-’ as a range operator.

• POSIX requires m4 to honor the locale environment variables of LANG, LC_ALL, LC_
CTYPE, LC_MESSAGES, and NLSPATH, but this has not yet been implemented in GNU
m4.

• POSIX states that only unquoted leading newlines and blanks (that is, space and tab)
are ignored when collecting macro arguments. However, this appears to be a bug in
POSIX, since most traditional implementations also ignore all whitespace (formfeed,
carriage return, and vertical tab). GNU m4 follows tradition and ignores all leading
unquoted whitespace.

Chapter 16: Compatibility with other versions of m4 97

16.3 Other incompatibilities

There are a few other incompatibilities between this implementation of m4, and the System
V version.
• GNU m4 implements sync lines differently from System V m4, when text is being di-

verted. GNU m4 outputs the sync lines when the text is being diverted, and System V
m4 when the diverted text is being brought back.
The problem is which lines and file names should be attached to text that is being,
or has been, diverted. System V m4 regards all the diverted text as being generated
by the source line containing the undivert call, whereas GNU m4 regards the diverted
text as being generated at the time it is diverted.
The sync line option is used mostly when using m4 as a front end to a compiler. If a
diverted line causes a compiler error, the error messages should most probably refer to
the place where the diversion were made, and not where it was inserted again.

• GNU m4 makes no attempt at prohibiting self-referential definitions like:
define(‘x’, ‘x’)
⇒
define(‘x’, ‘x ’)
⇒

There is nothing inherently wrong with defining ‘x’ to return ‘x’. The wrong thing
is to expand ‘x’ unquoted, because that would cause an infinite rescan loop. In m4,
one might use macros to hold strings, as we do for variables in other programming
languages, further checking them with:

ifelse(defn(‘holder’), ‘value’, ...)

In cases like this one, an interdiction for a macro to hold its own name would be
a useless limitation. Of course, this leaves more rope for the GNU m4 user to hang
himself! Rescanning hangs may be avoided through careful programming, a little like
for endless loops in traditional programming languages.

98 GNU M4 1.4.9 macro processor

Chapter 17: Correct version of some examples 99

17 Correct version of some examples

Some of the examples in this manuals are buggy or not very robust, for demonstration
purposes. Improved versions of these composite macros are presented here.

17.1 Solution for exch

The exch macro (see Section 5.2 [Arguments], page 24) as presented requires clients to
double quote their arguments. A nicer definition, which lets clients follow the rule of thumb
of one level of quoting per level of parentheses, involves adding quotes in the definition of
exch, as follows:

define(‘exch’, ‘‘$2’, ‘$1’’)
⇒
define(exch(‘expansion text’, ‘macro’))
⇒
macro
⇒expansion text

17.2 Solution for forloop

The forloop macro (see Section 6.4 [Forloop], page 39) as presented earlier can go into
an infinite loop if given an iterator that is not parsed as a macro name. It does not do
any sanity checking on its numeric bounds, and only permits decimal numbers for bounds.
Here is an improved version, shipped as ‘m4-1.4.9/examples/forloop2.m4’; this version
also optimizes based on the fact that the starting bound does not need to be passed to the
helper _forloop.

undivert(‘forloop2.m4’)dnl
⇒divert(‘-1’)
⇒# forloop(var, from, to, stmt) - improved version:
⇒# works even if VAR is not a strict macro name
⇒# performs sanity check that FROM is larger than TO
⇒# allows complex numerical expressions in TO and FROM
⇒define(‘forloop’, ‘ifelse(eval(‘($3) >= ($2)’), ‘1’,
⇒ ‘pushdef(‘$1’, eval(‘$2’))_forloop(‘$1’,
⇒ eval(‘$3’), ‘$4’)popdef(‘$1’)’)’)
⇒define(‘_forloop’,
⇒ ‘$3‘’ifelse(indir(‘$1’), ‘$2’, ‘’,
⇒ ‘define(‘$1’, incr(indir(‘$1’)))$0($@)’)’)
⇒divert‘’dnl
include(‘forloop2.m4’)
⇒
forloop(‘i’, ‘2’, ‘1’, ‘no iteration occurs’)
⇒
forloop(‘’, ‘1’, ‘2’, ‘ odd iterator name’)
⇒ odd iterator name odd iterator name
forloop(‘i’, ‘5 + 5’, ‘0xc’, ‘ 0x‘’eval(i, ‘16’)’)
⇒ 0xa 0xb 0xc

100 GNU M4 1.4.9 macro processor

forloop(‘i’, ‘a’, ‘b’, ‘non-numeric bounds’)
error m4:stdin:6: bad expression in eval (bad input): (b) >= (a)
⇒

Of course, it is possible to make even more improvements, such as adding an optional
step argument, or allowing iteration through descending sequences. GNU Autoconf provides
some of these additional bells and whistles in its m4_for macro.

17.3 Solution for foreach

The foreach and foreachq macros (see Section 6.5 [Foreach], page 40) as presented earlier
each have flaws. First, we will examine and fix the quadratic behavior of foreachq:

include(‘foreachq.m4’)
⇒
traceon(‘shift’)debugmode(‘aq’)
⇒
foreachq(‘x’, ‘‘1’, ‘2’, ‘3’, ‘4’’, ‘x
’)dnl
⇒1
error m4trace: -3- shift(‘1’, ‘2’, ‘3’, ‘4’)
error m4trace: -2- shift(‘1’, ‘2’, ‘3’, ‘4’)
⇒2
error m4trace: -4- shift(‘1’, ‘2’, ‘3’, ‘4’)
error m4trace: -3- shift(‘2’, ‘3’, ‘4’)
error m4trace: -3- shift(‘1’, ‘2’, ‘3’, ‘4’)
error m4trace: -2- shift(‘2’, ‘3’, ‘4’)
⇒3
error m4trace: -5- shift(‘1’, ‘2’, ‘3’, ‘4’)
error m4trace: -4- shift(‘2’, ‘3’, ‘4’)
error m4trace: -3- shift(‘3’, ‘4’)
error m4trace: -4- shift(‘1’, ‘2’, ‘3’, ‘4’)
error m4trace: -3- shift(‘2’, ‘3’, ‘4’)
error m4trace: -2- shift(‘3’, ‘4’)
⇒4
error m4trace: -6- shift(‘1’, ‘2’, ‘3’, ‘4’)
error m4trace: -5- shift(‘2’, ‘3’, ‘4’)
error m4trace: -4- shift(‘3’, ‘4’)
error m4trace: -3- shift(‘4’)

Each successive iteration was adding more quoted shift invocations, and the entire list
contents were passing through every iteration. In general, when recursing, it is a good idea
to make the recursion use fewer arguments, rather than adding additional quoted uses of
shift. By doing so, m4 uses less memory, invokes fewer macros, is less likely to run into
machine limits, and most importantly, performs faster. The fixed version of foreachq can
be found in ‘m4-1.4.9/examples/foreachq2.m4’:

include(‘foreachq2.m4’)
⇒
undivert(‘foreachq2.m4’)dnl

Chapter 17: Correct version of some examples 101

⇒include(‘quote.m4’)dnl
⇒divert(‘-1’)
⇒# foreachq(x, ‘item_1, item_2, ..., item_n’, stmt)
⇒# quoted list, improved version
⇒define(‘foreachq’, ‘pushdef(‘$1’)_foreachq($@)popdef(‘$1’)’)
⇒define(‘_arg1q’, ‘‘$1’’)
⇒define(‘_rest’, ‘ifelse(‘$#’, ‘1’, ‘’, ‘dquote(shift($@))’)’)
⇒define(‘_foreachq’, ‘ifelse(‘$2’, ‘’, ‘’,
⇒ ‘define(‘$1’, _arg1q($2))$3‘’$0(‘$1’, _rest($2), ‘$3’)’)’)
⇒divert‘’dnl
traceon(‘shift’)debugmode(‘aq’)
⇒
foreachq(‘x’, ‘‘1’, ‘2’, ‘3’, ‘4’’, ‘x
’)dnl
⇒1
error m4trace: -3- shift(‘1’, ‘2’, ‘3’, ‘4’)
⇒2
error m4trace: -3- shift(‘2’, ‘3’, ‘4’)
⇒3
error m4trace: -3- shift(‘3’, ‘4’)
⇒4

Note that the fixed version calls unquoted helper macros in _foreachq to trim elements
immediately; those helper macros in turn must re-supply the layer of quotes lost in the
macro invocation. Contrast the use of _arg1q, which quotes the first list element, with
_arg1 of the earlier implementation that returned the first list element directly.

For a different approach, the improved version of foreach, available in ‘m4-1.4.9/
examples/foreach2.m4’, simply overquotes the arguments to _foreach to begin with, using
dquote_elt. Then _foreach can just use _arg1 to remove the extra layer of quoting that
was added up front:

include(‘foreach2.m4’)
⇒
undivert(‘foreach2.m4’)dnl
⇒include(‘quote.m4’)dnl
⇒divert(‘-1’)
⇒# foreach(x, (item_1, item_2, ..., item_n), stmt)
⇒# parenthesized list, improved version
⇒define(‘foreach’, ‘pushdef(‘$1’)_foreach(‘$1’,
⇒ (dquote(dquote_elt$2)), ‘$3’)popdef(‘$1’)’)
⇒define(‘_arg1’, ‘$1’)
⇒define(‘_foreach’, ‘ifelse(‘$2’, ‘(‘’)’, ‘’,
⇒ ‘define(‘$1’, _arg1$2)$3‘’$0(‘$1’, (dquote(shift$2)), ‘$3’)’)’)
⇒divert‘’dnl
traceon(‘shift’)debugmode(‘aq’)
⇒
foreach(‘x’, ‘(‘1’, ‘2’, ‘3’, ‘4’)’, ‘x
’)dnl

102 GNU M4 1.4.9 macro processor

error m4trace: -4- shift(‘1’, ‘2’, ‘3’, ‘4’)
error m4trace: -4- shift(‘2’, ‘3’, ‘4’)
error m4trace: -4- shift(‘3’, ‘4’)
⇒1
error m4trace: -3- shift(‘‘1’’, ‘‘2’’, ‘‘3’’, ‘‘4’’)
⇒2
error m4trace: -3- shift(‘‘2’’, ‘‘3’’, ‘‘4’’)
⇒3
error m4trace: -3- shift(‘‘3’’, ‘‘4’’)
⇒4
error m4trace: -3- shift(‘‘4’’)

In summary, recursion over list elements is trickier than it appeared at first glance, but
provides a powerful idiom within m4 processing. As a final demonstration, both list styles
are now able to handle several scenarios that would wreak havoc on the original implemen-
tations. This points out one other difference between the two list styles. foreach evaluates
unquoted list elements only once, in preparation for calling _foreach. But foreachq eval-
uates unquoted list elements twice while visiting the first list element, once in _arg1q and
once in _rest. When deciding which list style to use, one must take into account whether
repeating the side effects of unquoted list elements will have any detrimental effects.

include(‘foreach2.m4’)
⇒
include(‘foreachq2.m4’)
⇒
dnl 0-element list:
foreach(‘x’, ‘’, ‘<x>’) / foreachq(‘x’, ‘’, ‘<x>’)
⇒ /
dnl 1-element list of empty element
foreach(‘x’, ‘()’, ‘<x>’) / foreachq(‘x’, ‘‘’’, ‘<x>’)
⇒<> / <>
dnl 2-element list of empty elements
foreach(‘x’, ‘(‘’,‘’)’, ‘<x>’) / foreachq(‘x’, ‘‘’,‘’’, ‘<x>’)
⇒<><> / <><>
dnl 1-element list of a comma
foreach(‘x’, ‘(‘,’)’, ‘<x>’) / foreachq(‘x’, ‘‘,’’, ‘<x>’)
⇒<,> / <,>
dnl 2-element list of unbalanced parentheses
foreach(‘x’, ‘(‘(’, ‘)’)’, ‘<x>’) / foreachq(‘x’, ‘‘(’, ‘)’’, ‘<x>’)
⇒<(><)> / <(><)>
define(‘active’, ‘ACT, IVE’)
⇒
traceon(‘active’)
⇒
dnl list of unquoted macros; expansion occurs before recursion
foreach(‘x’, ‘(active, active)’, ‘<x>
’)dnl
error m4trace: -4- active -> ‘ACT, IVE’

Chapter 17: Correct version of some examples 103

error m4trace: -4- active -> ‘ACT, IVE’
⇒<ACT>
⇒<IVE>
⇒<ACT>
⇒<IVE>
foreachq(‘x’, ‘active, active’, ‘<x>
’)dnl
error m4trace: -3- active -> ‘ACT, IVE’
error m4trace: -3- active -> ‘ACT, IVE’
⇒<ACT>
error m4trace: -3- active -> ‘ACT, IVE’
error m4trace: -3- active -> ‘ACT, IVE’
⇒<IVE>
⇒<ACT>
⇒<IVE>
dnl list of quoted macros; expansion occurs during recursion
foreach(‘x’, ‘(‘active’, ‘active’)’, ‘<x>
’)dnl
error m4trace: -1- active -> ‘ACT, IVE’
⇒<ACT, IVE>
error m4trace: -1- active -> ‘ACT, IVE’
⇒<ACT, IVE>
foreachq(‘x’, ‘‘active’, ‘active’’, ‘<x>
’)dnl
error m4trace: -1- active -> ‘ACT, IVE’
⇒<ACT, IVE>
error m4trace: -1- active -> ‘ACT, IVE’
⇒<ACT, IVE>
dnl list of double-quoted macro names; no expansion
foreach(‘x’, ‘(‘‘active’’, ‘‘active’’)’, ‘<x>
’)dnl
⇒<active>
⇒<active>
foreachq(‘x’, ‘‘‘active’’, ‘‘active’’’, ‘<x>
’)dnl
⇒<active>
⇒<active>

17.4 Solution for cleardivert

The cleardivert macro (see Section 10.4 [Cleardivert], page 64) cannot, as it stands, be
called without arguments to clear all pending diversions. That is because using undivert
with an empty string for an argument is different than using it with no arguments at all.
Compare the earlier definition with one that takes the number of arguments into account:

define(‘cleardivert’,
‘pushdef(‘_n’, divnum)divert(‘-1’)undivert($@)divert(_n)popdef(‘_n’)’)

⇒

104 GNU M4 1.4.9 macro processor

divert(‘1’)one
divert
⇒
cleardivert
⇒
undivert
⇒one
⇒
define(‘cleardivert’,

‘pushdef(‘_num’, divnum)divert(‘-1’)ifelse(‘$#’, ‘0’,
‘undivert‘’’, ‘undivert($@)’)divert(_num)popdef(‘_num’)’)

⇒
divert(‘2’)two
divert
⇒
cleardivert
⇒
undivert
⇒

17.5 Solution for fatal_error

The fatal_error macro (see Section 14.3 [M4exit], page 87) is not robust to versions of GNU
M4 earlier than 1.4.8, where invoking __file__ (see Section 14.2 [Location], page 85) inside
m4wrap would result in an empty string, and __line__ resulted in ‘0’ even though all files
start at line 1. Furthermore, versions earlier than 1.4.6 did not support the __program__
macro. If you want fatal_error to work across the entire 1.4.x release series, a better
implementation would be:

define(‘fatal_error’,
‘errprint(ifdef(‘__program__’, ‘__program__’, ‘‘m4’’)’dnl

‘:ifelse(__line__, ‘0’, ‘’,
‘__file__:__line__:’)‘ fatal error: $*

’)m4exit(‘1’)’)
⇒
m4wrap(‘divnum(‘demo of internal message’)
fatal_error(‘inside wrapped text’)’)
⇒
^D
error m4:stdin:6: Warning: excess arguments to builtin ‘divnum’ ignored
⇒0
error m4:stdin:6: fatal error: inside wrapped text

Appendix A: How to make copies of this manual 105

Appendix A How to make copies of this manual

A.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

106 GNU M4 1.4.9 macro processor

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: How to make copies of this manual 107

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,

108 GNU M4 1.4.9 macro processor

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: How to make copies of this manual 109

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

110 GNU M4 1.4.9 macro processor

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: How to make copies of this manual 111

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

112 GNU M4 1.4.9 macro processor

Appendix B: Indices of concepts and macros 113

Appendix B Indices of concepts and macros

B.1 Index for all m4 macros

This index covers all m4 builtins, as well as several useful composite macros. References are
exclusively to the places where a macro is introduced the first time.

__file__ . 85
__gnu__ . 79
__line__ . 85
__os2__ . 79
__program__ . 85
__unix__ . 79
__windows__ . 79

A
argn . 38
array . 23
array_set . 23

B
builtin . 33

C
capitalize . 71
changecom . 53
changequote . 50
changeword . 55
cleardivert . 65

D
debugfile . 47
debugmode . 46
decr . 73
define . 23
defn . 29
divert . 61
divnum . 64
dnl . 49
downcase . 71
dquote . 37
dquote_elt . 37
dumpdef . 43

E
errprint . 85
esyscmd . 80
eval . 73
example . 5

exch . 24

F
fatal_error . 87
foreach . 40
foreachq . 40
forloop . 39
format . 71

I
ifdef . 35
ifelse . 35
include . 59
incr . 73
index . 67
indir . 32

L
len . 67

M
m4exit . 87
m4wrap . 57
maketemp . 82
mkstemp . 82

N
nargs . 26

O
os2 . 79

P
patsubst . 70
popdef . 30
pushdef . 30

Q
quote . 37

114 GNU M4 1.4.9 macro processor

R
regexp . 67
reverse . 37

S
shift . 37
sinclude . 59
substr . 68
syscmd . 80
sysval . 81

T
traceoff . 43

traceon . 43

translit . 69

U
undefine . 28

undivert . 62

unix . 79

upcase . 71

W
windows . 79

B.2 Index for many concepts

A
arguments to macros . 19, 24
arguments to macros, special 25
arguments, more than nine 25, 38
arguments, quoted macro . 20
arithmetic . 73
arrays . 23
avoiding quadratic behavior 100

B
basic regular expressions 67, 70
blind macro . 17, 36
bug reports . 4
builtins, indirect call of . 33
builtins, special tokens . 30

C
call of builtins, indirect . 33
call of macros, indirect . 32
case statement . 36
changing comment delimiters 52
changing quote delimiters . 50
changing syntax . 54
characters, translating . 69
command line . 7
command line, file names on the 11
command line, macro definitions on the 8
command line, options . 7
commands, exit status from shell 81
commands, running shell . 79
comment delimiters, changing 52
comments . 13
comments, copied to output 53
comparing strings . 35
compatibility . 93

conditionals . 35
controlling debugging output 45
counting loops . 39

D
debugging macros . 43
debugging output, controlling 45
debugging output, saving . 47
decrement operator . 73
deferring expansion . 57
deferring output . 61
defining new macros . 23
definition stack . 30
definitions, displaying macro 29, 43
deleting macros . 28
deleting whitespace in input 49
delimiters, changing . 50, 52
discarding diverted text . 64
discarding input . 35, 49, 62
displaying macro definitions . 43
diversion numbers . 64
diverted text, discarding . 64
diverting output to files . 61
dumping into frozen file . 89

E
error messages, printing . 85
errors, fatal . 7
evaluation, of integer expressions 73
examples, understanding . 4
executing shell commands . 79
exit status from shell commands 81
exiting from m4 . 87
expansion of macros . 21
expansion, deferring . 57
expansion, tracing macro . 43

Appendix B: Indices of concepts and macros 115

expressions, evaluation of integer 73
expressions, regular . 67, 70
extracting substrings . 68

F
fast loading of frozen files . 89
fatal errors . 7
FDL, GNU Free Documentation License 105
file format, frozen file . 90
file inclusion . 59, 62, 64
file names, on the command line 11
files, diverting output to . 61
files, names of temporary . 82
for each loops . 40
for loops . 39
formatted output . 71
frozen file format . 90
frozen files for fast loading . 89

G
GNU extensions . . 17, 23, 25, 32, 33, 46, 47, 60, 62,

64, 67, 70, 71, 75, 80, 83, 89, 93
GNU M4, history of . 3

H
history of m4 . 3

I
included files, search path for 60
inclusion, of files . 59, 62, 64
increment operator . 73
indirect call of builtins . 33
indirect call of macros . 32
initialization, frozen state . 89
input location . 9, 85
input tokens . 13
input, discarding . 35, 49, 62
input, saving . 57
integer arithmetic . 73
integer expression evaluation 73
invoking m4 . 7
invoking macros . 17
iterating over lists . 40

L
length of strings . 67
lexical structure of words . 54
License . 105
limit, nesting . 9
literal output . 27
local variables . 31
location, input . 9, 85

loops . 37
loops, counting . 39
loops, list iteration . 40

M
M4PATH . 60
macro definitions, on the command line 8
macro expansion, tracing . 43
macro invocation . 17
macro, blind . 17, 36
macros, arguments to . 19, 24
macros, debugging . 43
macros, displaying definitions 29, 43
macros, expansion of . 21
macros, how to define new . 23
macros, how to delete . 28
macros, how to rename . 29
macros, indirect call of . 32
macros, quoted arguments to 20
macros, recursive . 37
macros, special arguments to 25
macros, temporary redefinition of 30
messages, printing error . 85
more than nine arguments 25, 38
multibranches . 36

N
names . 13
nesting limit . 9
nine arguments, more than 25, 38
numbers . 5

O
options, command line . 7
output, diverting to files . 61
output, formatted . 71
output, literal . 27
output, saving debugging . 47
overview of m4 . 3

P
pattern substitution . 70
platform macros . 79
positional parameters, more than nine 25
POSIX . 93
POSIXLY_CORRECT . 7
preprocessor features . 8
printing error messages . 85

Q
quadratic behavior, avoiding 100
quote delimiters, changing . 50
quoted macro arguments . 20

116 GNU M4 1.4.9 macro processor

quoted string . 13
quoting rule of thumb . 20

R
recursive macros . 37
redefinition of macros, temporary 30
regular expressions . 54, 67, 70
reloading a frozen file . 89
renaming macros . 29
reporting bugs . 4
rescanning . 10, 18, 27, 29, 97
rule of thumb, quoting . 20
running shell commands . 79

S
saving debugging output . 47
saving input . 57
search path for included files 60
shell commands, exit status from 81
shell commands, running . 79
special arguments to macros 25
stack, macro definition . 30
standard error, output to 43, 85
status of shell commands . 81
status, setting m4 exit . 87
string, quoted . 13
strings, length of . 67
substitution by regular expression 70
substrings, extracting . 68
substrings, locating . 67

suggestions, reporting . 4
suppressing warnings . 19
switch statement . 36
synchronization lines . 9
syntax, changing . 54

T
temporary file names . 82
temporary redefinition of macros 30
TMPDIR . 61
tokens . 13
tokens, builtin macro . 30
tokens, special . 14
tracing macro expansion . 43
translating characters . 69

U
undefining macros . 28
UNIX commands, exit status from 81
UNIX commands, running . 79

V
variables, local . 31

W
warnings, suppressing . 19
words . 13
words, lexical structure of . 54

	Introduction and preliminaries
	Introduction to m4
	Historical references
	Problems and bugs
	Using this manual

	Invoking m4
	Command line options for operation modes
	Command line options for preprocessor features
	Command line options for limits control
	Command line options for frozen state
	Command line options for debugging
	Specifying input files on the command line

	Lexical and syntactic conventions
	Macro names
	Quoting input to m4
	Comments in m4 input
	Other kinds of input tokens
	How m4 copies input to output

	How to invoke macros
	Macro invocation
	Preventing macro invocation
	Macro arguments
	On Quoting Arguments to macros
	Macro expansion

	How to define new macros
	Defining a macro
	Arguments to macros
	Special arguments to macros
	Deleting a macro
	Renaming macros
	Temporarily redefining macros
	Indirect call of macros
	Indirect call of builtins

	Conditionals, loops, and recursion
	Testing if a macro is defined
	If-else construct, or multibranch
	Recursion in m4
	Iteration by counting
	Iteration by list contents

	How to debug macros and input
	Displaying macro definitions
	Tracing macro calls
	Controlling debugging output
	Saving debugging output

	Input control
	Deleting whitespace in input
	Changing the quote characters
	Changing the comment delimiters
	Changing the lexical structure of words
	Saving text until end of input

	File inclusion
	Including named files
	Searching for include files

	Diverting and undiverting output
	Diverting output
	Undiverting output
	Diversion numbers
	Discarding diverted text

	Macros for text handling
	Calculating length of strings
	Searching for substrings
	Searching for regular expressions
	Extracting substrings
	Translating characters
	Substituting text by regular expression
	Formatting strings (printf-like)

	Macros for doing arithmetic
	Decrement and increment operators
	Evaluating integer expressions

	Macros for running shell commands
	Determining the platform
	Executing simple commands
	Reading the output of commands
	Exit status
	Making temporary files

	Miscellaneous builtin macros
	Printing error messages
	Printing current location
	Exiting from m4

	Fast loading of frozen state
	Using frozen files
	Frozen file format

	Compatibility with other versions of m4
	Extensions in GNU m4
	Facilities in System V m4 not in GNU m4
	Other incompatibilities

	Correct version of some examples
	Solution for exch
	Solution for forloop
	Solution for foreach
	Solution for cleardivert
	Solution for fatal_error

	How to make copies of this manual
	GNU Free Documentation License

	Indices of concepts and macros
	Index for all m4 macros
	Index for many concepts

