22 June 2001 16:42

CHAPTER THIRTEEN

MMAP AND DMA

This chapter delves into the area of Linux memory management, with an emphasis
on techniques that are useful to the device driver writer. The material in this chap-
ter is somewhat advanced, and not everybody will need a grasp of it. Nonetheless,
many tasks can only be done through digging more deeply into the memory man-
agement subsystem; it also provides an interesting look into how an important part
of the kernel works.

The material in this chapter is divided into three sections. The first covers the
implementation of the mmap system call, which allows the mapping of device
memory directly into a user process’s address space. We then cover the kernel
kiobuf mechanism, which provides direct access to user memory from kernel
space. The kiobuf system may be used to implement “raw I/O” for certain kinds
of devices. The final section covers direct memory access (DMA) I/O operations,
which essentially provide peripherals with direct access to system memory.

Of course, all of these techniques require an understanding of how Linux memory
management works, so we start with an overview of that subsystem.

Memory Management in Linux

Rather than describing the theory of memory management in operating systems,
this section tries to pinpoint the main features of the Linux implementation of the
theory. Although you do not need to be a Linux virtual memory guru to imple-
ment mmap, a basic overview of how things work is useful. What follows is a
fairly lengthy description of the data structures used by the kernel to manage
memory. Once the necessary background has been covered, we can get into
working with these structures.

370

22 June 2001 16:42

Memory Management in Linux

Address Types

Linux is, of course, a virtual memory system, meaning that the addresses seen by
user programs do not directly correspond to the physical addresses used by the
hardware. Virtual memory introduces a layer of indirection, which allows a num-
ber of nice things. With virtual memory, programs running on the system can allo-
cate far more memory than is physically available; indeed, even a single process
can have a virtual address space larger than the system’s physical memory. Virtual
memory also allows playing a number of tricks with the process’s address space,
including mapping in device memory.

Thus far, we have talked about virtual and physical addresses, but a number of the
details have been glossed over. The Linux system deals with several types of
addresses, each with its own semantics. Unfortunately, the kernel code is not
always very clear on exactly which type of address is being used in each situation,
so the programmer must be careful.

4_f_ kernel virtual
(addresses
——
[_’ high memory
user process L low memory
—_—
[— s
_I—>
|
user process — . kernel logical
addresses
——>
-
physical memory address space — page mapping

Figure 13-1. Address types used in Linux

The following is a list of address types used in Linux. Figure 13-1 shows how
these address types relate to physical memory.

User virtual addresses
These are the regular addresses seen by user-space programs. User addresses
are either 32 or 64 bits in length, depending on the underlying hardware
architecture, and each process has its own virtual address space.

371

22 June 2001 16:42

Chapter 13: mmap and DMA

Physical addresses
The addresses used between the processor and the system’s memory. Physical
addresses are 32- or 64-bit quantities; even 32-bit systems can use 64-bit physi-
cal addresses in some situations.

Bus addresses
The addresses used between peripheral buses and memory. Often they are the
same as the physical addresses used by the processor, but that is not necessar-
ily the case. Bus addresses are highly architecture dependent, of course.

Kernel logical addresses

These make up the normal address space of the kernel. These addresses map
most or all of main memory, and are often treated as if they were physical
addresses. On most architectures, logical addresses and their associated physi-
cal addresses differ only by a constant offset. Logical addresses use the hard-
ware’s native pointer size, and thus may be unable to address all of physical
memory on heavily equipped 32-bit systems. Logical addresses are usually
stored in variables of type unsigned long or void *. Memory returned
from kmalloc has a logical address.

Kernel virtual addresses
These differ from logical addresses in that they do not necessarily have a
direct mapping to physical addresses. All logical addresses are kernel virtual
addresses; memory allocated by wvmalloc also has a virtual address (but no
direct physical mapping). The function kmap, described later in this chapter,
also returns virtual addresses. Virtual addresses are usually stored in pointer
variables.

If you have a logical address, the macro __pa() (defined in <asm/page.h>) will
return its associated physical address. Physical addresses can be mapped back to
logical addresses with __va(), but only for low-memory pages.

Different kernel functions require different types of addresses. It would be nice if
there were different C types defined so that the required address type were
explicit, but we have no such luck. In this chapter, we will be clear on which
types of addresses are used where.

High and Low Memory

The difference between logical and kernel virtual addresses is highlighted on
32-bit systems that are equipped with large amounts of memory. With 32 bits, it is
possible to address 4 GB of memory. Linux on 32-bit systems has, until recently,
been limited to substantially less memory than that, however, because of the way
it sets up the virtual address space. The system was unable to handle more mem-
ory than it could set up logical addresses for, since it needed directly mapped ker-
nel addresses for all memory.

372

22 June 2001 16:42

Memory Management in Linux

Recent developments have eliminated the limitations on memory, and 32-bit sys-
tems can now work with well over 4 GB of system memory (assuming, of course,
that the processor itself can address that much memory). The limitation on how
much memory can be directly mapped with logical addresses remains, however.
Only the lowest portion of memory (up to 1 or 2 GB, depending on the hardware
and the kernel configuration) has logical addresses; the rest (high memory) does
not. High memory can require 64-bit physical addresses, and the kernel must set
up explicit virtual address mappings to manipulate it. Thus, many kernel functions
are limited to low memory only; high memory tends to be reserved for user-space
process pages.

The term “high memory” can be confusing to some, especially since it has other
meanings in the PC world. So, to make things clear, we’ll define the terms here:

Low memory
Memory for which logical addresses exist in kernel space. On almost every
system you will likely encounter, all memory is low memory.

High memory
Memory for which logical addresses do not exist, because the system contains
more physical memory than can be addressed with 32 bits.

On i386 systems, the boundary between low and high memory is usually set at just
under 1 GB. This boundary is not related in any way to the old 640 KB limit found
on the original PC. It is, instead, a limit set by the kernel itself as it splits the 32-bit
address space between kernel and user space.

We will point out high-memory limitations as we come to them in this chapter.

The Memory Map and struct page

Historically, the kernel has used logical addresses to refer to explicit pages of
memory. The addition of high-memory support, however, has exposed an obvious
problem with that approach—Ilogical addresses are not available for high memory.
Thus kernel functions that deal with memory are increasingly using pointers to
struct page instead. This data structure is used to keep track of just about
everything the kernel needs to know about physical memory; there is one
struct page for each physical page on the system. Some of the fields of this
structure include the following:

atomic_t count;
The number of references there are to this page. When the count drops to
zero, the page is returned to the free list.

373

22 June 2001 16:42

Chapter 13: mmap and DMA

wait_queue_head_t wait;
A list of processes waiting on this page. Processes can wait on a page when a
kernel function has locked it for some reason; drivers need not normally
worry about waiting on pages, though.

void *virtual;
The kernel virtual address of the page, if it is mapped; NULL, otherwise. Low-
memory pages are always mapped; high-memory pages usually are not.

unsigned long flags;
A set of bit flags describing the status of the page. These include PG_locked,
which indicates that the page has been locked in memory, and
PG_reserved, which prevents the memory management system from work-
ing with the page at all.

There is much more information within struct page, but it is part of the deeper
black magic of memory management and is not of concern to driver writers.

The kernel maintains one or more arrays of struct page entries, which track all
of the physical memory on the system. On most systems, there is a single array,
called mem_map. On some systems, however, the situation is more complicated.
Nonuniform memory access (NUMA) systems and those with widely discontiguous
physical memory may have more than one memory map array, so code that is
meant to be portable should avoid direct access to the array whenever possible.
Fortunately, it is usually quite easy to just work with struct page pointers with-
out worrying about where they come from.

Some functions and macros are defined for translating between struct page
pointers and virtual addresses:

struct page *virt_to_page(void *kaddr) ;
This macro, defined in <asm/page.h>, takes a kernel logical address and
returns its associated struct page pointer. Since it requires a logical
address, it will not work with memory from vmalloc or high memory.

void *page_address (struct page *page) ;
Returns the kernel virtual address of this page, if such an address exists. For
high memory, that address exists only if the page has been mapped.

#include <linux/highmem.h>

void *kmap (struct page *page);

void kunmap (struct page *page);
kmap returns a kernel virtual address for any page in the system. For low-
memory pages, it just returns the logical address of the page; for high-memory
pages, kmap creates a special mapping. Mappings created with kmap should
always be freed with kunmap, a limited number of such mappings is avail-
able, so it is better not to hold on to them for too long. kmap calls are

374

22 June 2001 16:42

Memory Management in Linux

additive, so if two or more functions both call kmap on the same page the

right thing happens. Note also that kmap can sleep if no mappings are avail-
able.

We will see some uses of these functions when we get into the example code later
in this chapter.

Page Tables

When a program looks up a virtual address, the CPU must convert the address to a
physical address in order to access physical memory. The step is usually per-
formed by splitting the address into bitfields. Each bitfield is used as an index into
an array, called a page table, to retrieve either the address of the next table or the
address of the physical page that holds the virtual address.

The Linux kernel manages three levels of page tables in order to map virtual
addresses to physical addresses. The multiple levels allow the memory range to be
sparsely populated; modern systems will spread a process out across a large range
of virtual memory. It makes sense to do things that ways; it allows for runtime flexi-
bility in how things are laid out.

Note that Linux uses a three-level system even on hardware that only supports two
levels of page tables or hardware that uses a different way to map virtual
addresses to physical ones. The use of three levels in a processor-independent
implementation allows Linux to support both two-level and three-level processors
without clobbering the code with a lot of #1fdef statements. This kind of conser-
vative coding doesn’t lead to additional overhead when the kernel runs on two-
level processors, because the compiler actually optimizes out the unused level.

It is time to take a look at the data structures used to implement the paging sys-
tem. The following list summarizes the implementation of the three levels in Linux,
and Figure 13-2 depicts them.

Page Directory (PGD)
The top-level page table. The PGD is an array of pgd_t items, each of which
points to a second-level page table. Each process has its own page directory,
and there is one for kernel space as well. You can think of the page directory
as a page-aligned array of pgd_ts.

Page mid-level Directory (PMD)
The second-level table. The PMD is a page-aligned array of pmd_t items. A
pmd_t is a pointer to the third-level page table. Two-level processors have no
physical PMD; they declare their PMD as an array with a single element,
whose value is the PMD itself—we’ll see in a while how this is handled in C
and how the compiler optimizes this level away.

375

22 June 2001 16:42

Chapter 13: mmap and DMA

struct mm_struct Virtual Address (addr)
| 00111010110110011001101110110101111|
L I IL IL I
T T T T
pgd part pmd part pte part offset
PGD
pgd_t PMD
\ d t
-.‘_»pg——) pmd_t PTE
e \“ pmd t pte_t struct page physical page
—] _Emdt pte_t
_Potr- . ; _pmdt pte_t >
_pgd t | "pmd_t Totet |
d t ' = —— — | T
pg—_ K pmd_t »)
& / pmd_t ! pte_t
_pod.t I pmd t | ' “oro gt
& “\ pmd_t) pte_t
pgd_t Lo —— |
—pgd_t - i pte_t
== | pmd_t pte_t
_—— pmd_t pte_t
: _—— pte_t
: s — |
e _—
L4 .
[)
[)

Software relationships Hardware relationships
...................... » pgd_offset (mm_struct, addr); pgd_val (pgd) ;
........... » pmd_offset (pgd_t, addr); pmd_val (pmd) ;
______ » pte_offset(pmd_t, addr); pte_val (pte) ;
—————————» pte_page(pte_t);

———» page.virtual

Figure 13-2. The three levels of Linux page tables

Page Table

A page-aligned array of items, each of which is called a Page Table Entry. The
kernel uses the pte_t type for the items. A pte_t contains the physical

address of the data page.

The types introduced in this list are defined in <asm/page.h>, which must be

included by every source file that plays with paging.

The kernel doesn’t need to worry about doing page-table lookups during normal
program execution, because they are done by the hardware. Nonetheless, the ker-
nel must arrange things so that the hardware can do its work. It must build the
page tables and look them up whenever the processor reports a page fault, that is,

376

22 June 2001 16:42

Memory Management in Linux

whenever the page associated with a virtual address needed by the processor is
not present in memory. Device drivers, too, must be able to build page tables and
handle faults when implementing mmap.

It’s interesting to note how software memory management exploits the same page
tables that are used by the CPU itself. Whenever a CPU doesn’t implement page
tables, the difference is only hidden in the lowest levels of architecture-specific
code. In Linux memory management, therefore, you always talk about three-level
page tables irrespective of whether they are known to the hardware or not. An
example of a CPU family that doesn’t use page tables is the PowerPC. PowerPC
designers implemented a hash algorithm that maps virtual addresses into a one-
level page table. When accessing a page that is already in memory but whose
physical address has expired from the CPU caches, the CPU needs to read memory
only once, as opposed to the two or three accesses required by a multilevel page
table approach. The hash algorithm, like multilevel tables, makes it possible to
reduce use of memory in mapping virtual addresses to physical ones.

Irrespective of the mechanisms used by the CPU, the Linux software implementa-
tion is based on three-level page tables, and the following symbols are used to
access them. Both <asm/page.h> and <asm/pgtable.h> must be included for
all of them to be accessible.

PTRS_PER_PGD

PTRS_PER_PMD

PTRS_PER_PTE
The size of each table. Two-level processors set PTRS_PER_PMD to 1, to
avoid dealing with the middle level.

unsigned pgd_val (pgd_t pgd)

unsigned pmd_val (pmd_t pmd)

unsigned pte_val (pte_t pte)
These three macros are used to retrieve the unsigned value from the typed
data item. The actual type used varies depending on the underlying architec-
ture and kernel configuration options; it is usually either unsigned long or,
on 32-bit processors supporting high memory, unsigned long long.
SPARCG64 processors use unsigned int. The macros help in using strict data
typing in source code without introducing computational overhead.

pgd_t * pgd_offset(struct mm_struct * mm, unsigned long
address)
pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
pte_t * pte_offset(pmd_t * dir, unsigned long address)
These inline functions® are used to retrieve the pgd, pmd, and pte entries

* On 32-bit SPARC processors, the functions are not inline but rather real extern func-
tions, which are not exported to modularized code. Therefore you won’t be able to use
these functions in a module running on the SPARC, but you won'’t usually need to.

377

22 June 2001 16:42

Chapter 13: mmap and DMA

associated with address. Page-table lookup begins with a pointer to struct
mm_struct. The pointer associated with the memory map of the current pro-
cess is current->mm, while the pointer to kernel space is described by
&init_mm. Two-level processors define pmd_offset(dir,add) as
(pmd_t *)dir, thus folding the pmd over the pgd. Functions that scan page
tables are always declared as inline, and the compiler optimizes out any
pmd lookup.

struct page *pte_page(pte_t pte)
This function returns a pointer to the struct page entry for the page in this
page-table entry. Code that deals with page-tables will generally want to use
pte_page rather than pte val, since pte_page deals with the processor-depen-
dent format of the page-table entry and returns the struct page pointer,
which is usually what’s needed.

pte_present (pte_t pte)

This macro returns a boolean value that indicates whether the data page is
currently in memory. This is the most used of several functions that access the
low bits in the pte—the bits that are discarded by pte_page. Pages may be
absent, of course, if the kernel has swapped them to disk (or if they have
never been loaded). The page tables themselves, however, are always present
in the current Linux implementation. Keeping page tables in memory simpli-
fies the kernel code because pgd_offset and friends never fail; on the other
hand, even a process with a “resident storage size” of zero keeps its page
tables in real RAM, wasting some memory that might be better used else-
where.

Each process in the system has a struct mm_struct structure, which contains
its page tables and a great many other things. It also contains a spinlock called
page_table_lock, which should be held while traversing or modifying the
page tables.

Just seeing the list of these functions is not enough for you to be proficient in the
Linux memory management algorithms; real memory management is much more
complex and must deal with other complications, like cache coherence. The previ-
ous list should nonetheless be sufficient to give you a feel for how page manage-
ment is implemented; it is also about all that you will need to know, as a device
driver writer, to work occasionally with page tables. You can get more information
from the include/asm and mm subtrees of the kernel source.

Virtual Memory Areas

Although paging sits at the lowest level of memory management, something more
is necessary before you can use the computer’s resources efficiently. The kernel
needs a higher-level mechanism to handle the way a process sees its memory.
This mechanism is implemented in Linux by means of virtual memory areas, which
are typically referred to as areas or VMAs.

378

22 June 2001 16:42

Memory Management in Linux

An area is a homogeneous region in the virtual memory of a process, a contiguous
range of addresses with the same permission flags. It corresponds loosely to the
concept of a “segment,” although it is better described as “a memory object with
its own properties.” The memory map of a process is made up of the following:

e An area for the program’s executable code (often called text).

e One area each for data, including initialized data (that which has an explicitly
assigned value at the beginning of execution), uninitialized data (BSS),* and
the program stack.

e One area for each active memory mapping.

The memory areas of a process can be seen by looking in /proc/pid/maps (where
pid, of course, is replaced by a process ID). /proc/self is a special case of
/proc/pid, because it always refers to the current process. As an example, here are
a couple of memory maps, to which we have added short comments after a sharp
sign:

morgana.root# cat /proc/l/maps # look at init

08048000-0804e000 r-xp 00000000 08:01 51297 /sbin/init # text
0804e000-08050000 rw-p 00005000 08:01 51297 /sbin/init # data
08050000-08054000 rwxp 00000000 00:00 O # zero-mapped bss
40000000-40013000 r-xp 00000000 08:01 39003 /1ib/1d-2.1.3.s0 # text
40013000-40014000 rw-p 00012000 08:01 39003 /1ib/1d-2.1.3.s0 # data
40014000-40015000 rw-p 00000000 00:00 O # bss for 1ld.so
4001b000-40108000 r-xp 00000000 08:01 39006 /1ib/1libc-2.1.3.s0 # text
40108000-4010c000 rw-p 000ec000 08:01 39006 /1lib/1libc-2.1.3.s0 # data
4010c000-40110000 rw-p 00000000 00:00 O # bss for libc.so
bfffe000-c0000000 rwxp f££££000 00:00 O # zero-mapped stack

morgana.root# rsh wolf head /proc/self/maps #### alpha-axp: static ecoff
000000011££f£fe000-0000000120000000 rwxp 0000000000000000 00:00 O # stack
0000000120000000-0000000120014000 r-xp 0000000000000000 08:03 2844 # text
0000000140000000-0000000140002000 rwxp 0000000000014000 08:03 2844 # data
0000000140002000-0000000140008000 rwxp 0000000000000000 00:00 O # bss

The fields in each line are as follows:
start-end perm offset major:minor inode image.

Each field in /proc/¥maps (except the image name) corresponds to a field in
struct vm_area_struct, and is described in the following list.

start
end
The beginning and ending virtual addresses for this memory area.

* The name BSS is a historical relic, from an old assembly operator meaning “Block started
by symbol.” The BSS segment of executable files isn’t stored on disk, and the kernel
maps the zero page to the BSS address range.

379

22 June 2001 16:42

Chapter 13: mmap and DMA

perm
A bit mask with the memory area’s read, write, and execute permissions. This
field describes what the process is allowed to do with pages belonging to the
area. The last character in the field is either p for “private” or s for “shared.”

offset
Where the memory area begins in the file that it is mapped to. An offset of
zero, of course, means that the first page of the memory area corresponds to
the first page of the file.

major

minor
The major and minor numbers of the device holding the file that has been
mapped. Confusingly, for device mappings, the major and minor numbers
refer to the disk partition holding the device special file that was opened by
the user, and not the device itself.

inode
The inode number of the mapped file.

image
The name of the file (usually an executable image) that has been mapped.

A driver that implements the mmap method needs to fill a VMA structure in the
address space of the process mapping the device. The driver writer should there-
fore have at least a minimal understanding of VMAs in order to use them.

Let’s look at the most important fields in struct vm_area_struct (defined in
<linux/mm.h>). These fields may be used by device drivers in their mmap
implementation. Note that the kernel maintains lists and trees of VMAs to optimize
area lookup, and several fields of vim_area_struct are used to maintain this
organization. VMAs thus can’t be created at will by a driver, or the structures will
break. The main fields of VMAs are as follows (note the similarity between these
fields and the /proc output we just saw):

unsigned long vm_start;

unsigned long vm_end;
The virtual address range covered by this VMA. These fields are the first two
fields shown in /proc/*/maps.

struct file *vm_file;
A pointer to the struct file structure associated with this area (if any).

unsigned long vm_pgoff;
The offset of the area in the file, in pages. When a file or device is mapped,
this is the file position of the first page mapped in this area.

380

22 June 2001 16:42

Memory Management in Linux

unsigned long vm_flags;
A set of flags describing this area. The flags of the most interest to device
driver writers are VM_IO and VM_RESERVED. VM_IO marks a VMA as being a
memory-mapped I/O region. Among other things, the VM_IO flag will prevent
the region from being included in process core dumps. VM_RESERVED tells
the memory management system not to attempt to swap out this VMA; it
should be set in most device mappings.

struct vm_operations_struct *vm_ops;
A set of functions that the kernel may invoke to operate on this memory area.
Its presence indicates that the memory area is a kernel “object” like the
struct file we have been using throughout the book.

void *vm_private_data;
A field that may be used by the driver to store its own information.

Like struct wvm_area_struct, the vm_operations_struct is defined in
<linux/mm.h>; it includes the operations listed next. These operations are the
only ones needed to handle the process’s memory needs, and they are listed in
the order they are declared. Later in this chapter, some of these functions will be
implemented; they will be described more completely at that point.

void (*open) (struct vm_area_struct *vma) ;
The open method is called by the kernel to allow the subsystem implementing
the VMA to initialize the area, adjust reference counts, and so forth. This
method will be invoked any time that a new reference to the VMA is made
(when a process forks, for example). The one exception happens when the
VMA is first created by mmap; in this case, the driver's mmap method is called
instead.

void (*close) (struct vm_area_struct *vma) ;
When an area is destroyed, the kernel calls its close operation. Note that
there’s no usage count associated with VMAs; the area is opened and closed
exactly once by each process that uses it.

void (*unmap) (struct vm_area_struct *vma, unsigned long
addr, size_t len);
The kernel calls this method to “unmap” part or all of an area. If the entire
area is unmapped, then the kernel calls wvm_ops->close as soon as
vm_ops->unmap returns.

void (*protect) (struct vm_area_struct *vma, unsigned long,
size_t, unsigned int newprot);
This method is intended to change the protection on a memory area, but is
currently not used. Memory protection is handled by the page tables, and the
kernel sets up the page-table entries separately.

381

22 June 2001 16:42

Chapter 13: mmap and DMA

int (*sync) (struct vm_area_struct *vma, unsigned long,
size_t, unsigned int flags);
This method is called by the msync system call to save a dirty memory region
to the storage medium. The return value is expected to be 0 to indicate suc-
cess and negative if there was an error.

struct page * (*nopage) (struct vm_area_struct *vma, unsigned
long address, int write_access);

When a process tries to access a page that belongs to a valid VMA, but that is
currently not in memory, the nopage method is called (if it is defined) for the
related area. The method returns the struct page pointer for the physical
page, after, perhaps, having read it in from secondary storage. If the nopage
method isn’t defined for the area, an empty page is allocated by the kernel.
The third argument, write_access, counts as “no-share”: a nonzero value
means the page must be owned by the current process, whereas 0 means that
sharing is possible.

struct page * (*wppage) (struct vm_area_struct *vma, unsigned
long address, struct page *page);

This method handles write-protected page faults but is currently unused. The
kernel handles attempts to write over a protected page without invoking the
area-specific callback. Write-protect faults are used to implement copy-on-
write. A private page can be shared across processes until one process writes
to it. When that happens, the page is cloned, and the process writes on its
own copy of the page. If the whole area is marked as read-only, a SIGSEGV
is sent to the process, and the copy-on-write is not performed.

int (*swapout) (struct page *page, struct file *file);
This method is called when a page is selected to be swapped out. A return
value of 0 signals success; any other value signals an error. In case of error,
the process owning the page is sent a SIGBUS. It is highly unlikely that a
driver will ever need to implement swapout; device mappings are not some-
thing that the kernel can just write to disk.

That concludes our overview of Linux memory management data structures. With
that out of the way, we can now proceed to the implementation of the mmap sys-
tem call.

The mmap Device Operation

Memory mapping is one of the most interesting features of modern Unix systems.
As far as drivers are concerned, memory mapping can be used to provide user
programs with direct access to device memory.

A definitive example of mmap usage can be seen by looking at a subset of the vir-
tual memory areas for the X Window System server:

382

22 June 2001 16:42

The mmap Device Operation

cat /proc/731/maps

08048000-08327000 r-xp 00000000 08:01 55505 /usr/X11R6/bin/XF86_SVGA
08327000-08369000 rw-p 002de000 08:01 55505 /usr/X11R6/bin/XF86_SVGA
40015000-40019000 rw-s fe2fc000 08:01 10778 /dev/mem
40131000-40141000 rw-s 000a0000 08:01 10778 /dev/mem
40141000-40941000 rw-s £4000000 08:01 10778 /dev/mem

The full list of the X server’'s VMAs is lengthy, but most of the entries are not of
interest here. We do see, however, three separate mappings of /dev/mem, which
give some insight into how the X server works with the video card. The first map-
ping shows a 16 KB region mapped at £e2£c000. This address is far above the
highest RAM address on the system; it is, instead, a region of memory on a PCI
peripheral (the video card). It will be a control region for that card. The middle
mapping is at a0000, which is the standard location for video RAM in the 640 KB
ISA hole. The last /dev/mem mapping is a rather larger one at £4000000 and is
the video memory itself. These regions can also be seen in /proc/iomem:

000a0000-000bffff : Video RAM area
f4000000-f4ffffff : Matrox Graphics, Inc. MGA G200 AGP
fe2fc000-fe2fffff : Matrox Graphics, Inc. MGA G200 AGP

Mapping a device means associating a range of user-space addresses to device
memory. Whenever the program reads or writes in the assigned address range, it
is actually accessing the device. In the X server example, using mmap allows
quick and easy access to the video card’s memory. For a performance-critical
application like this, direct access makes a large difference.

As you might suspect, not every device lends itself to the mmap abstraction; it
makes no sense, for instance, for serial ports and other stream-oriented devices.
Another limitation of mmap is that mapping is PAGE_SIZE grained. The kernel
can dispose of virtual addresses only at the level of page tables; therefore, the
mapped area must be a multiple of PAGE_SIZE and must live in physical memory
starting at an address that is a multiple of PAGE_SIZE. The kernel accommodates
for size granularity by making a region slightly bigger if its size isn’t a multiple of
the page size.

These limits are not a big constraint for drivers, because the program accessing the
device is device dependent anyway. It needs to know how to make sense of the
memory region being mapped, so the PAGE_SIZE alignment is not a problem. A
bigger constraint exists when ISA devices are used on some non-x86 platforms,
because their hardware view of ISA may not be contiguous. For example, some
Alpha computers see ISA memory as a scattered set of 8-bit, 16-bit, or 32-bit items,
with no direct mapping. In such cases, you can’t use mmap at all. The inability to
perform direct mapping of ISA addresses to Alpha addresses is due to the incom-
patible data transfer specifications of the two systems. Whereas early Alpha pro-
cessors could issue only 32-bit and 64-bit memory accesses, ISA can do only 8-bit
and 16-bit transfers, and there’s no way to transparently map one protocol onto
the other.

383

22 June 2001 16:42

Chapter 13: mmap and DMA

There are sound advantages to using mmap when it's feasible to do so. For
instance, we have already looked at the X server, which transfers a lot of data to
and from video memory; mapping the graphic display to user space dramatically
improves the throughput, as opposed to an [seek/write implementation. Another
typical example is a program controlling a PCI device. Most PCI peripherals map
their control registers to a memory address, and a demanding application might
prefer to have direct access to the registers instead of repeatedly having to call
joctl to get its work done.

The mmap method is part of the file_operations structure and is invoked
when the mmap system call is issued. With mmap, the kernel performs a good
deal of work before the actual method is invoked, and therefore the prototype of
the method is quite different from that of the system call. This is unlike calls such
as ioctl and poll, where the kernel does not do much before calling the method.

The system call is declared as follows (as described in the mmap(2) manual page):

mmap (caddr_t addr, size_t len, int prot, int flags, int £fd,
off_t offset)

On the other hand, the file operation is declared as
int (*mmap) (struct file *filp, struct vm_area_struct *vma);

The f£ilp argument in the method is the same as that introduced in Chapter 3,
while vma contains the information about the virtual address range that is used to
access the device. Much of the work has thus been done by the kernel; to imple-
ment mmap, the driver only has to build suitable page tables for the address range
and, if necessary, replace vma->vm_ops with a new set of operations.

There are two ways of building the page tables: doing it all at once with a func-
tion called remap_page _range, or doing it a page at a time via the nopage VMA
method. Both methods have their advantages. We’ll start with the “all at once”
approach, which is simpler. From there we will start adding the complications
needed for a real-world implementation.

Using remap_page_range

The job of building new page tables to map a range of physical addresses is han-
dled by remap_page_range, which has the following prototype:

int remap_page_range (unsigned long virt_add, unsigned long phys_add,
unsigned long size, pgprot_t prot);

The value returned by the function is the usual 0 or a negative error code. Let’s
look at the exact meaning of the function’s arguments:

384

22 June 2001 16:42

The mmap Device Operation

virt_add
The user virtual address where remapping should begin. The function builds
page tables for the wvirtual address range between virt_add and
virt_add+size.

phys_add
The physical address to which the virtual address should be mapped. The
function affects physical addresses from phys_add to phys_add+size.

size
The dimension, in bytes, of the area being remapped.

prot
The “protection” requested for the new VMA. The driver can (and should) use
the value found in vma->vm_page_prot.

The arguments to remap_page_range are fairly straightforward, and most of them
are already provided to you in the VMA when your mmap method is called. The
one complication has to do with caching: usually, references to device memory
should not be cached by the processor. Often the system BIOS will set things up
properly, but it is also possible to disable caching of specific VMAs via the protec-
tion field. Unfortunately, disabling caching at this level is highly processor depen-
dent. The curious reader may wish to look at the function pgprot_noncached from
drivers/char/mem.c to see what's involved. We won'’t discuss the topic further
here.

A Simple Implementation

If your driver needs to do a simple, linear mapping of device memory into a user
address space, remap_page_range is almost all you really need to do the job. The
following code comes from drivers/char/mem.c and shows how this task is per-
formed in a typical module called simple (Simple Implementation Mapping Pages
with Little Enthusiasm):

#include <linux/mm.h>

int simple_mmap (struct file *filp, struct vm_area_struct *vma)

{
unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;

if (offset >= _ _pa(high memory) || (filp->f_flags & O_SYNC))
vma->vm_flags |= VM_IO;
vma->vm_flags |= VM_RESERVED;

if (remap_page_range (vma->vm_start, offset,
vma->vm_end-vma->vm_start, vma->vm_page_prot))
return -EAGAIN;
return 0;

385

22 June 2001 16:42

Chapter 13: mmap and DMA

The /dev/mem code checks to see if the requested offset (stored in
vma->vm_pgoff) is beyond physical memory; if so, the VM_I0 VMA flag is set to
mark the area as being I/O memory. The VM_RESERVED flag is always set to keep
the system from trying to swap this area out. Then it is just a matter of calling
remap_page_range to create the necessary page tables.

Adding VMA Operations

As we have seen, the vmm_area_struct structure contains a set of operations
that may be applied to the VMA. Now we’ll look at providing those operations in
a simple way; a more detailed example will follow later on.

Here, we will provide open and close operations for our VMA. These operations
will be called anytime a process opens or closes the VMA; in particular, the open
method will be invoked anytime a process forks and creates a new reference to
the VMA. The open and close VMA methods are called in addition to the process-
ing performed by the kernel, so they need not reimplement any of the work done
there. They exist as a way for drivers to do any additional processing that they
may require.

We'll use these methods to increment the module usage count whenever the VMA
is opened, and to decrement it when it’s closed. In modern kernels, this work is
not strictly necessary; the kernel will not call the driver’s release method as long as
a VMA remains open, so the usage count will not drop to zero until all references
to the VMA are closed. The 2.0 kernel, however, did not perform this tracking, so
portable code will still want to be able to maintain the usage count.

So, we will override the default vma->vm_ops with operations that keep track of
the usage count. The code is quite simple—a complete mmap implementation for
a modularized /dev/mem looks like the following:

void simple_vma_open (struct vm_area_struct *vma)
{ MOD_INC_USE_COUNT; }

void simple_vma_close(struct vm_area_struct *vma)
{ MOD_DEC_USE_COUNT; }

static struct vm_operations_struct simple_remap_vm_ops = {
open: simple_vma_open,
close: simple_vma_close,

Y

int simple_remap_mmap (struct file *filp, struct vm_area_struct *vma)

{
unsigned long offset = VMA_OFFSET (vma) ;

if (offset >= __pa(high _memory) || (filp->f_flags & O_SYNC))
vma->vm_flags |= VM_IO;
vma->vm_flags |= VM_RESERVED;

386

The mmap Device Operation

if (remap_page_range (vma->vm_start, offset, vma->vm_end-vma->vm_start,
vma->vm_page_prot))
return -EAGAIN;

vma->vm_ops = &simple_remap_vm_ops;
simple_vma_open (vma) ;
return 0;

}

This code relies on the fact that the kernel initializes to NULL the vm_ops field in
the newly created area before calling £_op->mmap. The code just shown checks
the current value of the pointer as a safety measure, should something change in
future kernels.

The strange VMA_OFFSET macro that appears in this code is used to hide a differ-
ence in the vma structure across kernel versions. Since the offset is a number of
pages in 2.4 and a number of bytes in 2.2 and earlier kernels, <sysdep.h>
declares the macro to make the difference transparent (and the result is expressed
in bytes).

Mapping Memory with nopage

Although remap_page_range works well for many, if not most, driver mmap
implementations, sometimes it is necessary to be a little more flexible. In such situ-
ations, an implementation using the nopage VMA method may be called for.

The nopage method, remember, has the following prototype:

struct page (*nopage) (struct vm_area_struct *vma,
unsigned long address, int write_access);

When a user process attempts to access a page in a VMA that is not present in
memory, the associated nopage function is called. The address parameter will
contain the virtual address that caused the fault, rounded down to the beginning
of the page. The nopage function must locate and return the struct page
pointer that refers to the page the user wanted. This function must also take care
to increment the usage count for the page it returns by calling the get_page macro:

get_page (struct page *pageptr) ;

This step is necessary to keep the reference counts correct on the mapped pages.
The kernel maintains this count for every page; when the count goes to zero, the
kernel knows that the page may be placed on the free list. When a VMA is
unmapped, the kernel will decrement the usage count for every page in the area.
If your driver does not increment the count when adding a page to the area, the
usage count will become zero prematurely and the integrity of the system will be
compromised.

387

22 June 2001 16:42

22 June 2001 16:42

Chapter 13: mmap and DMA

One situation in which the nopage approach is useful can be brought about by the
mremap system call, which is used by applications to change the bounding
addresses of a mapped region. If the driver wants to be able to deal with mremap,
the previous implementation won’t work correctly, because there’s no way for the
driver to know that the mapped region has changed.

The Linux implementation of mremap doesn’t notify the driver of changes in the
mapped area. Actually, it does notify the driver if the size of the area is reduced
via the unmap method, but no callback is issued if the area increases in size.

The basic idea behind notifying the driver of a reduction is that the driver (or the
filesystem mapping a regular file to memory) needs to know when a region is
unmapped in order to take the proper action, such as flushing pages to disk.
Growth of the mapped region, on the other hand, isn’t really meaningful for the
driver until the program invoking mremap accesses the new virtual addresses. In
real life, it's quite common to map regions that are never used (unused sections of
program code, for example). The Linux kernel, therefore, doesn’t notify the driver
if the mapped region grows, because the nopage method will take care of pages
one at a time as they are actually accessed.

In other words, the driver isn’t notified when a mapping grows because nopage
will do it later, without having to use memory before it is actually needed. This
optimization is mostly aimed at regular files, whose mapping uses real RAM.

The nopage method, therefore, must be implemented if you want to support the
mremap system call. But once you have nopage, you can choose to use it exten-
sively, with some limitations (described later). This method is shown in the next
code fragment. In this implementation of mmap, the device method only replaces
vma->vm_ops. The nopage method takes care of “remapping” one page at a time
and returning the address of its struct page structure. Because we are just
implementing a window onto physical memory here, the remapping step is sim-
ple—we need only locate and return a pointer to the struct page for the
desired address.

An implementation of /dev/mem using nopage looks like the following:

struct page *simple_vma_nopage (struct vm_area_struct *vma,
unsigned long address, int write_access)
{
struct page *pageptr;
unsigned long physaddr = address - vma->vm_start + VMA_OFFSET (vma) ;
pageptr = virt_to_page(__va(physaddr)) ;
get_page (pageptr) ;
return pageptr;

int simple_nopage_mmap (struct file *filp, struct vm_area_struct *vma)

unsigned long offset = VMA_OFFSET (vma) ;

388

22 June 2001 16:42

The mmap Device Operation

if (offset >= __pa(high memory) || (filp->f_flags & O_SYNC))
vma->vm_flags |= VM_IO;
vma->vm_flags |= VM_RESERVED;

vma->vm_ops = &simple_nopage_vm_ops;
simple_vma_open (vma) ;
return 0;

}

Since, once again, we are simply mapping main memory here, the nopage func-
tion need only find the correct struct page for the faulting address and incre-
ment its reference count. The required sequence of events is thus to calculate the
desired physical address, turn it into a logical address with __wva, and then finally
to turn it into a struct page with virt_to_page. It would be possible, in general,
to go directly from the physical address to the struct page, but such code
would be difficult to make portable across architectures. Such code might be nec-
essary, however, if one were trying to map high memory, which, remember, has
no logical addresses. simple, being simple, does not worry about that (rare) case.

If the nopage method is left NULL, kernel code that handles page faults maps the
zero page to the faulting virtual address. The zero page is a copy-on-write page
that reads as zero and that is used, for example, to map the BSS segment. There-
fore, if a process extends a mapped region by calling mremap, and the driver
hasn’t implemented nopage, it will end up with zero pages instead of a segmenta-
tion fault.

The nopage method normally returns a pointer to a struct page. If, for some
reason, a normal page cannot be returned (e.g., the requested address is beyond
the device’s memory region), NOPAGE_SIGBUS can be returned to signal the
error. nopage can also return NOPAGE_OOM to indicate failures caused by resource
limitations.

Note that this implementation will work for ISA memory regions but not for those
on the PCI bus. PCI memory is mapped above the highest system memory, and
there are no entries in the system memory map for those addresses. Because there
is thus no struct page to return a pointer to, nopage cannot be used in these
situations; you must, instead, use remap_page_range.

Remapping Specific 1/0 Regions

All the examples we've seen so far are reimplementations of /devw/mem; they
remap physical addresses into user space. The typical driver, however, wants to
map only the small address range that applies to its peripheral device, not all of
memory. In order to map to user space only a subset of the whole memory range,
the driver needs only to play with the offsets. The following lines will do the trick
for a driver mapping a region of simple_region_size bytes, beginning at
physical address simple_region_start (which should be page aligned).

389

22 June 2001 16:42

Chapter 13: mmap and DMA

unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
unsigned long physical = simple_region_start + off;
unsigned long vsize = vma->vm_end - vma->vm_start;
unsigned long psize = simple_region_size - off;

if (vsize > psize)
return -EINVAL; /* spans too high */
remap_page_range (vma_>vm_start, physical, vsize, vma->vm_page_prot) ;

In addition to calculating the offsets, this code introduces a check that reports an
error when the program tries to map more memory than is available in the I/O
region of the target device. In this code, psize is the physical I/O size that is left
after the offset has been specified, and vsize is the requested size of virtual
memory; the function refuses to map addresses that extend beyond the allowed
memory range.

Note that the user process can always use mremap to extend its mapping, possibly
past the end of the physical device area. If your driver has no nopage method, it
will never be notified of this extension, and the additional area will map to the
zero page. As a driver writer, you may well want to prevent this sort of behavior;
mapping the zero page onto the end of your region is not an explicitly bad thing
to do, but it is highly unlikely that the programmer wanted that to happen.

The simplest way to prevent extension of the mapping is to implement a simple
nopage method that always causes a bus signal to be sent to the faulting process.
Such a method would look like this:

struct page *simple_nopage (struct vm_area_struct *vma,
unsigned long address, int write_access);
{ return NOPAGE_SIGBUS; /* send a SIGBUS */}

Remapping RAM

Of course, a more thorough implementation could check to see if the faulting
address is within the device area, and perform the remapping if that is the case.
Once again, however, nopage will not work with PCI memory areas, so extension
of PCI mappings is not possible. In Linux, a page of physical addresses is marked
as “reserved” in the memory map to indicate that it is not available for memory
management. On the PC, for example, the range between 640 KB and 1 MB is
marked as reserved, as are the pages that host the kernel code itself.

An interesting limitation of remap_page range is that it gives access only to
reserved pages and physical addresses above the top of physical memory.
Reserved pages are locked in memory and are the only ones that can be safely
mapped to user space; this limitation is a basic requirement for system stability.

390

22 June 2001 16:42

The mmap Device Operation

Therefore, remap_page_range won’'t allow you to remap conventional
addresses—which include the ones you obtain by calling get_free_page. Instead, it
will map in the zero page. Nonetheless, the function does everything that most
hardware drivers need it to, because it can remap high PCI buffers and ISA mem-

ory.

The limitations of remap_page_range can be seen by running mapper, one of the
sample programs in misc-progs in the files provided on the O'Reilly FTP site. map-
peris a simple tool that can be used to quickly test the mmap system call; it maps
read-only parts of a file based on the command-line options and dumps the
mapped region to standard output. The following session, for instance, shows that
/dev/mem doesn’t map the physical page located at address 64 KB—instead we
see a page full of zeros (the host computer in this examples is a PC, but the result
would be the same on other platforms):

morgana.root# ./mapper /dev/mem 0x10000 0x1000 | od -Ax -t x1
mapped "/dev/mem" from 65536 to 69632
000000 00 00 00 00 00 00 00 00O 00 00O 00 0O 00 0O 00 0O

*

001000

The inability of remap_page _range to deal with RAM suggests that a device like
scullp can’t easily implement mmap, because its device memory is conventional
RAM, not I/O memory. Fortunately, a relatively easy workaround is available to
any driver that needs to map RAM into user space; it uses the nopage method that
we have seen earlier.

Remapping RAM with the nopage method

The way to map real RAM to user space is to use vm_ops->nopage to deal with
page faults one at a time. A sample implementation is part of the scullp module,
introduced in Chapter 7.

scullp is the page oriented char device. Because it is page oriented, it can imple-
ment mmap on its memory. The code implementing memory mapping uses some
of the concepts introduced earlier in “Memory Management in Linux.”

Before examining the code, let’s look at the design choices that affect the mmap
implementation in sculip.

e scullp doesn't release device memory as long as the device is mapped. This is
a matter of policy rather than a requirement, and it is different from the behav-
ior of scull and similar devices, which are truncated to a length of zero when
opened for writing. Refusing to free a mapped scullp device allows a process
to overwrite regions actively mapped by another process, so you can test and
see how processes and device memory interact. To avoid releasing a mapped
device, the driver must keep a count of active mappings; the vmas field in the
device structure is used for this purpose.

391

22 June 2001 16:42

Chapter 13: mmap and DMA

e Memory mapping is performed only when the scullp order parameter is O.
The parameter controls how get free_pages is invoked (see Chapter 7,
“get_free_page and Friends”). This choice is dictated by the internals of
gel_free_pages, the allocation engine exploited by scullp. To maximize alloca-
tion performance, the Linux kernel maintains a list of free pages for each allo-
cation order, and only the page count of the first page in a cluster is incre-
mented by get_free_pages and decremented by free_pages. The mmap method
is disabled for a scullp device if the allocation order is greater than zero,
because nopage deals with single pages rather than clusters of pages. (Return
to “A scull Using Whole Pages: scullp” in Chapter 7 if you need a refresher on
scullp and the memory allocation order value.)

The last choice is mostly intended to keep the code simple. It is possible to cor-
rectly implement mmap for multipage allocations by playing with the usage count
of the pages, but it would only add to the complexity of the example without
introducing any interesting information.

Code that is intended to map RAM according to the rules just outlined needs to
implement open, close, and nopage; it also needs to access the memory map to
adjust the page usage counts.

This implementation of scullp_mmap is very short, because it relies on the nopage
function to do all the interesting work:

int scullp_mmap (struct file *filp, struct vm_area_struct *vma)

{
struct inode *inode = INODE_FROM_F (filp);

/* refuse to map if order is not 0 */
if (scullp_devices[MINOR (inode->i_rdev)] .order)
return -ENODEV;

/* don’t do anything here: "nopage" will fill the holes */
vma->vm_ops = &scullp_vm_ops;

vma->vm_flags |= VM_RESERVED;

vma->vm_private_data = scullp_devices + MINOR (inode->i_rdev) ;
scullp_vma_open (vma) ;

return 0O;

}

The purpose of the leading conditional is to avoid mapping devices whose alloca-
tion order is not 0. scullp's operations are stored in the vm_ops field, and a
pointer to the device structure is stashed in the vm_private_data field. At the
end, vim_ops->open is called to update the usage count for the module and the
count of active mappings for the device.

open and close simply keep track of these counts and are defined as follows:

392

The mmap Device Operation

void scullp_vma_open(struct vm_area_struct *vma)
{

ScullP_Dev *dev = scullp_vma_to_dev(vma) ;

dev->vmas++;
MOD_INC_USE_COUNT;

void scullp_vma_close(struct vm_area_struct *vma)
{
ScullP_Dev *dev = scullp_vma_to_dev(vma) ;

dev->vmas--;
MOD_DEC_USE_COUNT;
}

The function sculls_vma_to_dev simply returns the contents of the vm_pri-
vate_data field. It exists as a separate function because kernel versions prior to
2.4 lacked that field, requiring that other means be used to get that pointer. See
“Backward Compatibility” at the end of this chapter for details.

Most of the work is then performed by nopage. In the scullp implementation, the
address parameter to nopage is used to calculate an offset into the device; the
offset is then used to look up the correct page in the scullp memory tree.

struct page *scullp_vma_nopage (struct vm_area_struct *vma,
unsigned long address, int write)

unsigned long offset;

ScullP_Dev *ptr, *dev = scullp_vma_to_dev(vma) ;
struct page *page = NOPAGE_SIGBUS;

void *pageptr = NULL; /* default to "missing" */

down (&dev->sem) ;
offset = (address - vma->vm_start) + VMA_OFFSET (vma) ;
if (offset >= dev->size) goto out; /* out of range */

/*
* Now retrieve the scullp device from the list, then the page.
* If the device has holes, the process receives a SIGBUS when
* accessing the hole.
*/
offset >>= PAGE_SHIFT; /* offset is a number of pages */
for (ptr = dev; ptr && offset >= dev->gset;) {
ptr = ptr->next;
offset -= dev->gset;
}
if (ptr && ptr->data) pageptr = ptr->dataloffset];
if (!pageptr) goto out; /* hole or end-of-file */
page = virt_to_page (pageptr) ;

/* got it, now increment the count */

393

22 June 2001 16:42

22 June 2001 16:42

Chapter 13: mmap and DMA

get_page (page) ;
out:

up (&dev->sem) ;

return page;

}

scullp uses memory obtained with get free_pages. That memory is addressed using
logical addresses, so all scullp_nopage has to do to get a struct page pointer is
to call virt_to_page.

The scullp device now works as expected, as you can see in this sample output
from the mapper utility. Here we send a directory listing of /dev (which is long) to
the scullp device, and then use the mapper utility to look at pieces of that listing
with mmap.

morgana% ls -1 /dev > /dev/scullp
morgana% ./mapper /dev/scullp 0 140
mapped "/dev/scullp" from 0 to 140

total 77
—YWXY-XY-X 1 root root 26689 Mar 2 2000 MAKEDEV
Crw-rw-rw- 1 root root 14, 14 Aug 10 20:55 admmidio

morgana% ./mapper /dev/scullp 8192 200
mapped "/dev/scullp" from 8192 to 8392

0

crw———- 1 root root 113, 1 Mar 26 1999 cuml
crw———- 1 root root 113, 2 Mar 26 1999 cum2
Crw———- 1 root root 113, 3 Mar 26 1999 cum3

Remapping Virtual Addresses

Although it’s rarely necessary, it’s interesting to see how a driver can map a virtual
address to user space using mmap. A true virtual address, remember, is an address
returned by a function like vmalloc or kmap—that is, a virtual address mapped in
the kernel page tables. The code in this section is taken from scullv, which is the
module that works like scul/lp but allocates its storage through vmalloc.

Most of the scullv implementation is like the one we’ve just seen for sculip, except
that there is no need to check the order parameter that controls memory alloca-
tion. The reason for this is that vmalloc allocates its pages one at a time, because
single-page allocations are far more likely to succeed than multipage allocations.
Therefore, the allocation order problem doesn’t apply to vmalloced space.

Most of the work of vmalloc is building page tables to access allocated pages as a
continuous address range. The nopage method, instead, must pull the page tables
back apart in order to return a struct page pointer to the caller. Therefore, the
nopage implementation for scullv must scan the page tables to retrieve the page
map entry associated with the page.

394

22 June 2001 16:42

The mmap Device Operation

The function is similar to the one we saw for scullp, except at the end. This code
excerpt only includes the part of nopage that differs from sculip:

pgd_t *pgd; pmd_t *pmd; pte_t *pte;
unsigned long lpage;

* After scullv lookup, "page" is now the address of the page
* needed by the current process. Since it’s a vmalloc address,
* first retrieve the unsigned long value to be looked up
* in page tables.
*/

lpage = VMALLOC_VMADDR (pageptr) ;

spin_lock (&init_mm.page_table_lock) ;

pgd pgd_offset (&init_mm, lpage);

pmd = pmd_offset (pgd, lpage);

pte = pte_offset (pmd, lpage):;

page = pte_page(*pte);

spin_unlock (&init_mm.page_table_lock) ;

/* got it, now increment the count */
get_page (page) ;

out:

up (&dev->sem) ;

return page;

The page tables are looked up using the functions introduced at the beginning of
this chapter. The page directory used for this purpose is stored in the memory
structure for kernel space, init_mm. Note that scullv obtains the
page_table_lock prior to traversing the page tables. If that lock were not held,
another processor could make a change to the page table while scullv was
halfway through the lookup process, leading to erroneous results.

The macro VMALLOC_VMADDR (pageptr) returns the correct unsigned long
value to be used in a page-table lookup from a vmalloc address. A simple cast of
the value wouldn’t work on the x86 with kernels older than 2.1, because of a
glitch in memory management. Memory management for the x86 changed in ver-
sion 2.1.1, and VMALLOC_VMADDR is now defined as the identity function, as it
has always been for the other platforms. Its use is still suggested, however, as a
way of writing portable code.

Based on this discussion, you might also want to map addresses returned by
ioremap to user space. This mapping is easily accomplished because you can use
remap_page_range directly, without implementing methods for virtual memory
areas. In other words, remap_page_range is already usable for building new page
tables that map I/O memory to user space; there’s no need to look in the kernel
page tables built by vremap as we did in scullv.

395

22 June 2001 16:42

Chapter 13: mmap and DMA

The kiobuf Interface

As of version 2.3.12, the Linux kernel supports an I/O abstraction called the kernel
/O buffer, or kiobuf. The kiobuf interface is intended to hide much of the com-
plexity of the virtual memory system from device drivers (and other parts of the
system that do I/O). Many features are planned for kiobufs, but their primary use
in the 2.4 kernel is to facilitate the mapping of user-space buffers into the kernel.

The kiobuf Structure

Any code that works with kiobufs must include <linux/iobuf.h>. This file
defines struct kiobuf, which is the heart of the kiobuf interface. This structure
describes an array of pages that make up an I/O operation; its fields include the
following:

int nr_pages;
The number of pages in this kiobuf

int length;
The number of bytes of data in the buffer

int offset;
The offset to the first valid byte in the buffer

struct page **maplist;
An array of page structures, one for each page of data in the kiobuf

The key to the kiobuf interface is the maplist array. Functions that operate on
pages stored in a kiobuf deal directly with the page structures—all of the virtual
memory system overhead has been moved out of the way. This implementation
allows drivers to function independent of the complexities of memory manage-
ment, and in general simplifies life greatly.

Prior to use, a kiobuf must be initialized. It is rare to initialize a single kiobuf in
isolation, but, if need be, this initialization can be performed with kiobuf init:

void kiobuf_init(struct kiobuf *iobuf);

Usually kiobufs are allocated in groups as part of a kernel I/O vector, or kiovec. A
kiovec can be allocated and initialized in one step with a call to alloc_kiovec:

int alloc_kiovec (int nr, struct kiobuf **iovec);

The return value is 0 or an error code, as usual. When your code has finished with
the kiovec structure, it should, of course, return it to the system:

void free_kiovec (int nr, struct kiobuf **);

The kernel provides a pair of functions for locking and unlocking the pages
mapped in a kiovec:

396

22 June 2001 16:42

The kiobuf Interface

int lock_kiovec (int nr, struct kiobuf *iovec[], int wait);
int unlock_kiovec (int nr, struct kiobuf *iovec[]);

Locking a kiovec in this manner is unnecessary, however, for most applications of
kiobufs seen in device drivers.

Mapping User-Space Buffers and Raw 1/O

Unix systems have long provided a “raw” interface to some devices—block
devices in particular—which performs I/O directly from a user-space buffer and
avoids copying data through the kernel. In some cases much improved perfor-
mance can be had in this manner, especially if the data being transferred will not
be used again in the near future. For example, disk backups typically read a great
deal of data from the disk exactly once, then forget about it. Running the backup
via a raw interface will avoid filling the system buffer cache with useless data.

The Linux kernel has traditionally not provided a raw interface, for a number of
reasons. As the system gains in popularity, however, more applications that expect
to be able to do raw I/O (such as large database management systems) are being
ported. So the 2.3 development series finally added raw I/O; the driving force
behind the kiobuf interface was the need to provide this capability.

Raw I/O is not always the great performance boost that some people think it
should be, and driver writers should not rush out to add the capability just
because