The Linux-PAM Module Writers' Guide

Andrew G. Morgan <nmor gan@er nel . or g>
Thorsten Kukuk <kukuk@ hkukuk. de>

The Linux-PAM Module Writers' Guide
by Andrew G. Morgan and Thorsten Kukuk

Version 1.1.2, 31. August 2010
Abstract

Thismanual documentswhat a programmer needsto know in order to write amodule that conformsto the Linux-PAM
standard.lt also discusses some security issues from the point of view of the module programmer.

R 1 1o o [oo 1

0 =1 P 1

S Y o o1 1

2. What can be expected by the MOAUIEcciviiiii e 2
2.1. Getting and setting PAM_ITEMS and datacoovvieiiiiiiiiiciii e e 2
2.1.1. Set Module iNterNal daEacuuuiiiiiiieeee e 2

2.1.2. Get module INterNal dataccvvvnieiiiii e 3

2.1.3. SEtiNG PAM JOMS ...ttt e e e 3

2.1.4. GENG PAM JTEIMS ..ot e e e e e e e e e e e aa s 5

2,05, GEL USEN NEIMIE ...c.iieieeeee ettt e e et et et e e e e e e et e et e en e e e eaneeneenns 7

2.1.6. The conversation fUNCHIONccuuieiiiiie e e et e e e eees 7

2.1.7. Set or change PAM environment variablecccoiviiiiiiiiiciin e, 9

2.1.8. Get a PAM environment variablecooeuviiiiiiiiiiiei e 10

2.1.9. Getting the PAM enVIronNMENtoiiiiiiiiii e e e e e 10

2.2. Other functions provided by | i bpam........ccoooiiiiiiii e, 11
2.2.1. Strings describing PAM €T0r COUESuuiivnieiiiieiii e e 11

2.2.2. Request adelay on faillureccouuiiiiiiiiii e 11

3. What isexpected of amOAUIEcouiiiiiiii e 13
TN @ = 4T 1 PRSP 13
3.1.1. Functional indePendENCEciuiiiii e 13

3.1.2. Minimizing administration problemscccoiviiiiiiiii i 13

3.1.3. Arguments supplied to the modulecccoeuiiiiiiii e 13

3.2. Authentication ManagEMENTuiiiii i e e e e e e e e e e e eanaaes 14
3.2.1. Service function for user authenticationcceiveviiiiiieriiii e, 14

3.2.2. Service function to ater credentialSooevveviieeiiiiie e 14

3.3, ACCOUNE MENAGJEMENT ...ttt e e e et e et e et e et et e e enaeans 15
3.3.1. Service function for account Managementcovveiieeiiiieiie e, 16

3.4, SESSION MEBNBGEIMIENEevueeeiiieei ettt e et e ee e e et e e et e e et e eat e e et e e et e e et estnaeeanaeeenneeanns 16
3.4.1. Service function to start SeSSIoN MaNAgEMENtc..uvevrneeiiieeiii e e e eaeeeen 16

3.4.2. Service function to terminate Session Managementccccvvevvieeeiiieeiineennneennn, 17

3.5. Authentication token ManagemMENtoeiiuiiiiiii e e e e e e e 17
3.5.1. Service function to alter authentication tOKeNccooevvviiiieiiiiineiiiiin e, 18

4, GENEric OptioNal @rQUMENES ... ceuuiiii e i e e e e e e e e e e e e et e e et e e et e e e e e e aa e e et e eeaneeeeas 20
I = oo =00 0 411 o 0 To) (- 21
5.1. Security issues for module Creationcc.viiiiiiiiiiieii e e e 21
5.1.1. SUFfICIENE FESOUICESvuiieiiiii e ee ittt e e e et e e et e e e e e 21

5.1.2. WHO 'S WHO? .ottt e et e e et e e e e eee 21

5.1.3. Using the conversation fUNCLIONoieiiiiiiiiiei e 21

5.1.4, AUthentiCation tOKENSuuiiiiiiii e e e e e et e e e e e eees 22

o WIS SN o S Lo o () P 22

5.3. Modules that require system liBraries ..o 23

6. AN eXaMPIE MOQUIEcoeiii e e e e e e et e et e et e e e e eaens 24
A = =T | o T PSP 25
8. AUthOr/aCkNOWIEAGMENES ... it e e e e e eaes 26
9. Copyright information for this dOCUMENtoeiiiiiiii e 27

Chapter 1. Introduction
1.1. Description

Linux-PAM (Pluggable Authentication Modules for Linux) is a library that enables the local system
administrator to choose how individual applications authenticate users. For an overview of the Linux-PAM
library see the Linux-PAM System Administrators' Guide.

A Linux-PAM module is a single executable binary file that can be loaded by the Linux-PAM interface
library. This PAM library is configured locally with a system file, / et ¢/ pam conf , to authenticate
a user request via the locally available authentication modules. The modules themselves will usualy be
located in the directory /1 i b/ security (or/|i b64/security, depending on the architecture)
and take the form of dynamically loadable object files (see dlopen(3). Alternatively, the modules can be
statically linked into the Linux-PAM library; thisis mostly to allow Linux-PAM to be used on platforms
without dynamic linking available, but thisis adeprecated functionality. It isthe Linux-PAM interface that
is called by an application and it is the responsibility of the library to locate, load and call the appropriate
functionsin a Linux-PAM-module.

Except for the immediate purpose of interacting with the user (entering a password etc..) the module

should never call the application directly. This exception requires a " conversation mechanism" which is
documented below.

1.2. Synopsis

#i ncl ude <security/pam nodul es. h>

gcc -fPIC -c pamnodul e. c
gcc -shared -o pam nodul e. so pam nodul e. o -1l pam

Chapter 2. What can be expected by
the module

Here we list the interface that the conventions that all Linux-PAM modules must adhere to.

2.1. Getting and setting PAM_ITEMs and data

First, we cover what the module should expect from the Linux-PAM library and a Linux-PAM aware
application. Essentially thisisthel i bpam * library.

2.1.1. Set module internal data

#include <security/pam_modules.h>

i nt pam set dat a(panmh, nodul e_data_nane, data, (*cleanup)(pam handle_t
*panmh, void *data, int error_status));

pam handl e_t *panh;

const char *nodul e_dat a_nane;

voi d *dat a;

void (*cl eanup) (pam handle_t *panmh, void *data, int error_status);

2.1.1.1. DESCRIPTION

The pam set _dat a function associates a pointer to an object with the (hopefully) unique string
module_data _namein the PAM context specified by the pamh argument.

PAM modules may be dynamically loadable objects. In genera such files should not contain static
variables. This function and its counterpart pam_get data(3), provide a mechanism for a module to
associate some data with the handle pamh. Typically amodule will call thepam set _dat a functionto
register some data under a (hopefully) unique module_data _name. The datais available for use by other
modules too but not by an application. Since this functions stores only a pointer to the data, the module
should not modify or free the content of it.

The function ¢l eanup() is associated with the data and, if non-NULL, it is called when this data is
over-written or following a call to pam_end(3).

The error_status argument is used to indicate to the module the sort of action it isto take in cleaning this
dataitem. Asan example, Kerberos creates aticket file during the authentication phase, this file might be
associated with adata item. When pam_end(3) is called by the module, the error_status carries the return
value of the pam_authenticate(3) or other libpam function as appropriate. Based on thisvalue the Kerberos
module may choose to delete the ticket file (authentication failure) or leave it in place.

The error_status may have been logically OR'd with either of the following two values:

PAM_DATA_REPLACE When adataitemisbeing replaced (through asecond call topam set _dat a)
this mask is used. Otherwise, the call is assumed to be from pam_end(3).

PAM_DATA _SILENT Which indicates that the process would prefer to perform the ¢l eanup()
quietly. That is, discourages |ogging/messages to the user.

What can be expected by the module

2.1.1.2. RETURN VALUES

2.1.2.

PAM_BUF_ERR Memory buffer error.
PAM_SUCCESS Data was successful stored.

PAM_SYSTEM_ERR A NULL pointer was submitted as PAM handle or the function was called by an
application.

Get module internal data

#include <security/pam_modules.h>
i nt pam get dat a(pamh, nodul e_data_nane, data);
const pam handl e_t *pamh;

const char *nodul e_data_nane;
const void **dat a;

2.1.2.1. DESCRIPTION

This function together with the pam_set data(3) function is useful to manage module-specific data
meaningful only to the calling PAM module.

The pam get dat a function looks up the object associated with the (hopefully) unique string
module_data name in the PAM context specified by the pamh argument. A successful call to
pam get dat a will result in data pointing to the object. Note, this datais not a copy and should be
treated as constant by the module.

2.1.2.2. RETURN VALUES

2.1.3.

PAM_SUCCESS Data was successful retrieved.

PAM_SYSTEM_ERR A NULL pointer was submitted as PAM handle or the function was called
by an application.

PAM_NO_MODULE _DATAModule data not found or thereis an entry, but it has the value NULL.

Setting PAM items

#include <security/pam_modules.h>
int pamset _iten(panmh, itemtype, item;
pam handl e_t *panh;

int itemtype;
const void *item

2.1.3.1. DESCRIPTION

The pam set _i t emfunction allows applications and PAM service modules to access and to update
PAM informations of item_type. For this a copy of the object pointed to by the item argument is created.
The following item types are supported:

What can be expected by the module

PAM_SERVICE

PAM_USER

The service name (which identifies that PAM stack that the PAM functions will
use to authenticate the program).

The username of the entity under whose identity service will be given. That is,
following authentication, PAM_USER identifies the local entity that gets to use
the service. Note, this value can be mapped from something (eg., "anonymous')
to something else (eg. "guest119") by any module in the PAM stack. As such
an application should consult the value of PAM_USER after each call to a PAM
function.

PAM_USER PROMPT The string used when prompting for a user's name. The default value for this

PAM_TTY

PAM_RUSER

PAM_RHOST

PAM_AUTHTOK

PAM_OLDAUTHTOK

PAM_CONV

string isalocalized version of "login: ".

The terminal name: prefixed by / dev/ if it is a device file; for graphical, X-
based, applications the value for thisitem should be the $DISPLAY variable.

The requesting user name: local name for a locally requesting user or a remote
user name for aremote requesting user.

Generally an application or module will attempt to supply the value that is most
strongly authenticated (a local account before a remote one. The level of trust
in this value is embodied in the actual authentication stack associated with the
application, so it is ultimately at the discretion of the system administrator.

PAM_RUSER@PAM_RHOST should always identify the requesting user. In
some cases, PAM_RUSER may be NULL. In such situations, it is unclear who
the requesting entity is.

The requesting hostname (the hostname of the machine from which the
PAM_RUSERentity isrequesting service). That isPAM_RUSER@PAM_RHOST
does identify the requesting user. In some applications, PAM_RHOST may be
NULL. In such situations, it is unclear where the authentication request is
originating from.

The authentication token (often a password). This token should be ignored by all
module functions besides pam_sm_authenticate(3) and pam_sm_chauthtok(3).
Intheformer function it is used to pass the most recent authentication token from
one stacked module to another. In thelatter function the token is used for another
purpose. It contains the currently active authentication token.

The old authentication token. This token should be ignored by all module
functions except pam_sm_chauthtok(3).

The pam_conv structure. See pam_conv(3).

Thefollowing additional items are specific to Linux-PAM and should not be used in portabl e applications:

PAM_FAIL_DELAY

PAM_XDISPLAY

PAM_XAUTHDATA

A function pointer to redirect centrally managed failure delays. See
pam_fail_delay(3).

Thename of the X display. For graphical, X-based applicationsthevauefor this
item should be the $DISPLAY variable. This value may be used independently
of PAM_TTY for passing the name of the display.

A pointer to a structure containing the X authentication data required to make
a connection to the display specified by PAM_XDISPLAY, if such information
is necessary. See pam_xauth_data(3).

What can be expected by the module

PAM_AUTHTOK_TYPEThe default action is for the module to use the following prompts when
reguesting passwords: "New UNIX password: " and "Retype UNIX password:
". The exampleword UNIX can bereplaced with thisitem, by default it isempty.
Thisitemis used by pam_get_authtok(3).

For al item types, other than PAM_CONV and PAM_FAIL_DELAY, item is a pointer to a <NUL>
terminated character string. In the case of PAM_CONYV, item points to an initialized pam_conv structure.
In the case of PAM_FAIL_DELAY, itemisafunction pointer: voi d (*del ay_fn) (int retval,
unsi gned usec_del ay, void *appdata_ptr)

Both, PAM_AUTHTOK and PAM_OLDAUTHTOK, will be reseted before returning to the application.
Which means an application is not able to access the authentication tokens.

2.1.3.2. RETURN VALUES

2.1.4.

PAM_BAD_ITEM The application attempted to set an undefined or inaccessible item.
PAM_BUF ERR Memory buffer error.
PAM_SUCCESS Data was successful updated.

PAM_SYSTEM_ERR The pam_handle_t passed as first argument was invalid.

Getting PAM items

#include <security/pam_modules.h>
int pamget _itenm(panmh, itemtype, item;
const pam handl e_t *panh;

int itemtype;
const void **item

2.1.4.1. DESCRIPTION

Thepam get _i t emfunction allows applicationsand PAM service modulesto access and retrieve PAM
informationsof item_type. Upon successful return, item contains apointer to the val ue of the corresponding
item. Note, thisis a pointer to the actual data and should not be free()'ed or over-written! The following
values are supported for item_type:

PAM_SERVICE The service name (which identifies that PAM stack that the PAM functions will
use to authenticate the program).

PAM_USER The username of the entity under whose identity service will be given. That is,
following authentication, PAM_USER identifies the local entity that gets to use
the service. Note, this value can be mapped from something (eg., "anonymous'")
to something else (eg. "guest119") by any module in the PAM stack. As such
an application should consult the value of PAM_USER after each call to a PAM
function.

PAM_USER PROMPT The string used when prompting for a user's name. The default value for this
string isalocalized version of "login: ".

PAM_TTY The terminal name: prefixed by / dev/ if it is a device file; for graphical, X-
based, applications the value for this item should be the $DISPLAY variable.

What can be expected by the module

PAM_RUSER The requesting user name: local name for alocally requesting user or a remote
user name for a remote requesting user.

Generally an application or module will attempt to supply the value that is most
strongly authenticated (a local account before a remote one. The level of trust
in this value is embodied in the actual authentication stack associated with the
application, so it is ultimately at the discretion of the system administrator.

PAM_RUSER@PAM_RHOST should aways identify the requesting user. In
some cases, PAM_RUSER may be NULL. In such situations, it is unclear who
the requesting entity is.

PAM_RHOST The requesting hosthname (the hostname of the machine from which the
PAM_RUSERentity isrequesting service). That isPAM_RUSER@PAM_RHOST
does identify the requesting user. In some applications, PAM_RHOST may be
NULL. In such situations, it is unclear where the authentication request is
originating from.

PAM_AUTHTOK The authentication token (often apassword). This token should be ignored by all
module functions besides pam_sm_authenticate(3) and pam_sm_chauthtok(3).
Intheformer function it is used to pass the most recent authentication token from
one stacked modul e to ancther. In the latter function the token is used for another
purpose. It contains the currently active authentication token.

PAM_OLDAUTHTOK The old authentication token. This token should be ignored by all module
functions except pam_sm_chauthtok(3).

PAM_CONV The pam_conv structure. See pam_conv(3).
Thefollowing additional items are specific to Linux-PAM and should not be used in portabl e applications:

PAM_FAIL_DELAY A function pointer to redirect centrally managed failure delays. See
pam_fail_delay(3).

PAM_XDISPLAY Thename of the X display. For graphical, X-based applicationsthevauefor this
item should be the $DISPLAY variable. This value may be used independently
of PAM_TTY for passing the name of the display.

PAM_XAUTHDATA A pointer to a structure containing the X authentication data required to make
a connection to the display specified by PAM_XDISPLAY, if such information
is necessary. See pam_xauth_data(3).

PAM_AUTHTOK_TYPEThe default action is for the module to use the following prompts when
reguesting passwords: "New UNIX password: " and "Retype UNIX password:
". The exampleword UNIX can bereplaced with thisitem, by default it isempty.
Thisitemis used by pam_get_authtok(3).

If a service module wishes to obtain the name of the user, it should not use this function, but instead
perform acall to pam_get user(3).

Only a service module is privileged to read the authentication tokens, PAM_AUTHTOK and
PAM_OLDAUTHTOK.

2.1.4.2. RETURN VALUES

PAM_BAD_ITEM The application attempted to set an undefined or inaccessible item.

What can be expected by the module

2.1.5.

PAM_BUF ERR Memory buffer error.
PAM_PERM_DENIED The value of itemwas NULL.
PAM_SUCCESS Data was successful updated.

PAM_SYSTEM_ERR The pam handle t passed as first argument wasinvalid.

Get user name

#include <security/pam_modules.h>
i nt pam get _user (pamh, user, pronpt);

const pam handl e_t *pamh;
const char **user;
const char *pronpt;

2.1.5.1. DESCRIPTION

The pam get _user function returns the name of the user specified by pam_start(3). If no user was
specified it returns what pam get _item (panmh, PAM USER, ...); would have returned. If
thisis NULL it obtains the username via the pam_conv(3) mechanism, it prompts the user with the first
non-NULL string in the following list:

e The prompt argument passed to the function.
e What is returned by pam_get_item (pamh, PAM_USER_PROMPT, ...);
e Thedefault prompt: "login; "

By whatever means the username is obtained, a pointer to it isreturned as the contents of * user. Note, this
memory should not be free()'d or modified by the module.

This function sets the PAM_USER item associated with the pam_set_item(3) and pam_get_item(3)
functions.

2.1.5.2. RETURN VALUES

2.1.6.

PAM_SUCCESS User name was successful retrieved.
PAM_SYSTEM_ERR A NULL pointer was submitted.

PAM_CONV_ERR Theconversation method supplied by the application failed to obtain the username.

The conversation function

#include <security/pam_appl.h>

struct pam nmessage {
int nmeg_style;
const char *nmsg;

s

What can be expected by the module

struct pamresponse {
char *resp;
int resp_retcode;

b

struct pam conv {
int (*conv)(int numnsg, const struct pam nessage **nsg,
struct pamresponse **resp, void *appdata_ptr);
voi d *appdata_ptr;
b

2.1.6.1. DESCRIPTION

The PAM library uses an application-defined callback to allow adirect communication between aloaded
module and the application. This callback is specified by the struct pam_conv passed to pam_start(3) at
the start of the transaction.

When amodul e callsthereferenced conv() function, the argument appdata_ptr isset to the second element
of this structure.

The other arguments of a call to conv() concern the information exchanged by module and application.
That isto say, num_msg holdsthe length of the array of pointers, msg. After asuccessful return, the pointer
resp pointsto an array of pam_response structures, holding the application supplied text. Theresp_retcode
member of this struct is unused and should be set to zero. It is the caller's responsibility to release both,
this array and the responses themselves, using free(3). Note, *resp isastruct pam_response array and not
an array of pointers.

The number of responses is always equal to the num_msg conversation function argument. This does
require that the response array is free(3)'d after every call to the conversation function. The index of the
responses corresponds directly to the prompt index in the pam_message array.

On failure, the conversation function should release any resources it has allocated, and return one of the
predefined PAM error codes.

Each message can have one of four types, specified by the msg_style member of struct pam _message:
PAM_PROMPT_ECHO_OFF Obtain a string without echoing any text.

PAM_PROMPT_ECHO_ON Obtain a string whilst echoing text.

PAM_ERROR_MSG Display an error message.

PAM_TEXT_INFO Display some text.

The point of having an array of messages is that it becomes possible to pass a number of things to the
applicationin asingle call from themodule. It can a so be convenient for the application that related things
come at once: a windows based application can then present a single form with many messages/prompts
on at once.

In passing, it is worth noting that there is a descrepency between the way Linux-PAM handles the
const struct pam_message **msg conversation function argument from the way that Solaris PAM (and
derivitives, known to include HP/UX, are there others?) does. Linux-PAM interprets the msg argument
as entirely equivalent to the following prototype const struct pam_message *msg[] (which, in spirit, is
consistent with the commonly used prototypes for argv argument to the familiar main() function: char
**argv; and char *argv[]). Said another way Linux-PAM interprets the msg argument as a pointer to

What can be expected by the module

an array of num_msg read only 'struct pam_message' pointers. Solaris PAM implementation interprets
this argument as a pointer to a pointer to an array of num_msg pam_message structures. Fortunately,
perhaps, for most modul e/application devel opers when num_msg has avalue of one these two definitions
are entirely equivalent. Unfortunately, casually raising this number to two has led to unanticipated
compatibility problems.

For what its worth the two known module writer work-arounds for trying to maintain source level
compatibility with both PAM implementations are:

» never cal the conversation function with num_msg greater than one.

» set up msg as doubly referenced so both types of conversation function can find the messages. That
is, make

meg[n] = & ((*msg)[n])

2.1.6.2. RETURN VALUES

2.1.7.

PAM_BUF_ERR Memory buffer error.
PAM_CONV_ERR Conversation failure. The application should not set *resp.

PAM_SUCCESS Success.

Set or change PAM environment variable

#include <security/pam_appl.h>
i nt pam put env(pamh, nane_val ue);

pam handl e_t *panh;
const char *nane_val ue;

2.1.7.1. DESCRIPTION

Thepam put env functionisused to add or changethevalue of PAM environment variabl es as associated
with the pamh handle.

The pamh argument is an authentication handle obtained by a prior call to pam_start(). The name_value
argument isa single NUL terminated string of one of the following forms:

NAME=value of variable In this case the environment variable of the given NAME is set to the
indicated value: value of variable. If thisvariable is already known, it
is overwritten. Otherwiseit is added to the PAM environment.

NAME= Thisfunction setsthe variable to an empty value. It islisted separately
to indicate that thisis the correct way to achieve such a setting.

NAME Without an '=' the pam put env() function will delete the
corresponding variable from the PAM environment.

pam_put env() operates on acopy of name_value, which meansin contrast to putenv(3), the application
isresponsible to free the data.

What can be expected by the module

2.1.7.2. RETURN VALUES

PAM_PERM_DENIED Argument name value givenisaNULL pointer.

PAM_BAD_ITEM Variable requested (for deletion) is not currently set.

PAM_ABORT The pamh handleis corrupt.
PAM_BUF_ERR Memory buffer error.
PAM_SUCCESS The environment variable was successfully updated.

2.1.8. Get a PAM environment variable

#include <security/pam_appl.h>
const char *pam get env(panh, nane);

pam handl e_t *pamh;
const char *nane;

2.1.8.1. DESCRIPTION

The pam _get env function searches the PAM environment list as associated with the handle pamh for
an item that matches the string pointed to by name and returns a pointer to the value of the environment
variable. The application is not allowed to free the data.

2.1.8.2. RETURN VALUES

The pam get env function returns NULL on failure.

2.1.9. Getting the PAM environment

#include <security/pam_appl.h>
char **pam get envli st (pamh);

pam handl e_t *panh;
2.1.9.1. DESCRIPTION

Thepam get envl i st function returns acomplete copy of the PAM environment as associated with the
handle pamh. The PAM environment variabl es represent the contents of the regular environment variables
of the authenticated user when service is granted.

The format of the memory isamalloc()'d array of char pointers, the last element of whichisset to NULL.
Each of the non-NULL entries in this array point to a NUL terminated and malloc()'d char string of the
form: "name=value".

It should be noted that this memory will never be free()'d by libpam. Once obtained by a cal to
pam get envl i st itistheresponsibility of the calling application to free() this memory.

It is by design, and not a coincidence, that the format and contents of the returned array matches that
required for the third argument of the execle(3) function call.

10

What can be expected by the module

2.1.9.2. RETURN VALUES

Thepam get envl i st function returns NULL on failure.

2.2. Other functions provided by | | bpam
2.2.1. Strings describing PAM error codes

#include <security/pam_appl.h>
const char *pam strerror(pamh, errnunj;

pam handl e_t *panh;
int errnum

2.2.1.1. DESCRIPTION

Thepam st r er r or function returnsapointer to astring describing the error code passed in the argument
errnum, possibly using the LC_MESSAGES part of the current locale to select the appropriate language.
This string must not be modified by the application. No library function will modify this string.

2.2.1.2. RETURN VALUES

This function returns always a pointer to a string.

2.2.2. Request a delay on failure

#include <security/pam_appl.h>
int pam fail _del ay(pamh, usec);

pam handl e_t *panh;
unsi gned int usec;

2.2.2.1. DESCRIPTION

Thepam f ai | _del ay function provides a mechanism by which an application or module can suggest
aminimum delay of usec micro-seconds. The function keeps a record of the longest time requested with
thisfunction. Should pam_authenticate(3) fail, thefailing return to the application is delayed by an amount
of time randomly distributed (by up to 50%) about thislongest value.

Independent of success, the delay time is reset to its zero default value when the PAM service module
returns control to the application. The delay occurs after all authentication modules have been called, but
before control is returned to the service application.

When using this function the programmer should check if it is available with:

#i f def HAVE_PAM FAI L_DELAY

#endi f /* HAVE_PAM FAI L_DELAY */

11

What can be expected by the module

For applications written with a single thread that are event driven in nature, generating this delay may be
undesirable. Instead, the application may want to register the delay in some other way. For example, in a
single threaded server that serves multiple authentication requests from asingle event loop, the application
might want to simply mark a given connection as blocked until an application timer expires. For this
reason the delay function can be changed with the PAM_FAIL_DELAY item. It can be queried and set
with pam_get item(3) and pam_set_item (3) respectively. The value used to set it should be a function
pointer of the following prototype:

void (*delay _fn)(int retval, unsigned usec_delay, void *appdata ptr);

The arguments being the retval return code of the module stack, the usec_delay micro-second delay that
libpam is requesting and the appdata_ptr that the application has associated with the current pamh. This
last value was set by the application when it called pam_start(3) or explicitly with pam_set_item(3). Note,
if PAM_FAIL_DELAY itemisunset (or set to NULL), then no delay will be performed.

2.2.2.2. RETURN VALUES

PAM_SUCCESS Delay was successful adjusted.

PAM_SYSTEM_ERR A NULL pointer was submitted as PAM handle.

12

Chapter 3. What is expected of a
module

The module must supply asub-set of the six functions listed bel ow. Together they define the function of a
Linux-PAM module. Module developers are strongly urged to read the comments on security that follow
thislist.

3.1. Overview

3.1.1.

3.1.2.

3.1.3.

The six module functions are grouped into four independent management groups. These groups are as
follows: authentication, account, session and password. To be properly defined, amodule must define all
functions within at least one of these groups. A single module may contain the necessary functions for
all four groups.

Functional independence

The independence of the four groups of service a module can offer means that the module should allow
for the possibility that any one of these four services may legitimately be called in any order. Thus, the
module writer should consider the appropriateness of performing a service without the prior success of
some other part of the module.

As an informative example, consider the possibility that an application applies to change a user's
authentication token, without having first requested that Linux-PAM authenticate the user. In some cases
this may be deemed appropriate: when r oot wants to change the authentication token of some lesser user.
In other cases it may not be appropriate: when joe maliciously wants to reset alice's password; or when
anyone other than the user themself wishes to reset their KERBEROS authentication token. A policy for
this action should be defined by any reasonable authentication scheme, the module writer should consider
this when implementing a given module.

Minimizing administration problems

To avoid system administration problems and the poor construction of a/ et ¢/ pam conf file, the
module developer may define all six of the following functions. For those functions that would not be
called, the module should return PAM_SERVICE_ERR and write an appropriate message to the system
log. When this action is deemed inappropriate, the function would simply return PAM_IGNORE.

Arguments supplied to the module

Thef | ags argument of each of the following functions can belogically OR'd with PAM_SI LENT, which
is used to inform the module to not pass any text (errors or warnings) application.

The ar gc and ar gv arguments are taken from the line appropriate to this module---that is, with the
service_name matching that of the application---in the configuration file (see the Linux-PAM System
Administrators' Guide). Together these two parameters provide the number of arguments and an array
of pointers to the individual argument tokens. This will be familiar to C programmers as the ubiquitous
method of passing command arguments to the function mai n(') . Note, however, that the first argument
(ar gv[0]) isatrue argument and not the name of the module.

13

What is expected of amodule

3.2. Authentication management

3.2.1.

To be correctly initialized, PAM_SM AUTH must be #define'd prior to including <security/
pam nmodul es. h>. Thiswill ensure that the prototypes for static modules are properly declared.

Service function for user authentication

#define PAM_SM_AUTH

#include <security/pam_modules.h>

i nt pam sm aut henti cat e(panh, flags, argc, argv);
pam handl e_t *panh;

int flags;

int argc;
const char **argv;

3.2.1.1. DESCRIPTION

The pam sm aut henticate function is the service modules implementation of the
pam_authenticate(3) interface.

This function performs the task of authenticating the user.
Valid flags, which may be logically OR'd with PAM_SILENT, are:
PAM_SILENT Do not emit any messages.

PAM_DISALLOW_NULL_AUTHTOReturn PAM_AUTH_ERR if the database of authentication tokens
for this authentication mechanism has a NULL entry for the user.
Without thisflag, such aNULL token will lead to a success without
the user being prompted.

3.2.1.2. RETURN VALUES

3.2.2.

PAM_AUTH_ERR Authentication failure.

PAM_CRED_INSUFFICIENT For some reason the application does not have sufficient credentials to
authenticate the user.

PAM_AUTHINFO_UNAVAIL The modules were not able to access the authentication information.
This might be due to a network or hardware failure etc.

PAM_SUCCESS The authentication token was successfully updated.
PAM_USER_UNKNOWN The supplied username is not known to the authentication service.

PAM_MAXTRIES One or more of the authentication modules has reached its limit of tries
authenticating the user. Do not try again.

Service function to alter credentials

#define PAM_SM_AUTH

14

What is expected of amodule

#include <security/pam_modules.h>
i nt pam sm setcred(panh, flags, argc, argv);

pam handl e_t *panmnh;
int flags;

int argc;

const char **argv;

3.2.2.1. DESCRIPTION

Thepam sm set cr ed function isthe service module€'simplementation of the pam_setcred(3) interface.

This function performs the task of altering the credentials of the user with respect to the corresponding
authorization scheme. Generally, an authentication module may have access to more information about
a user than their authentication token. This function is used to make such information available to the
application. It should only be called after the user has been authenticated but before a session has been
established.

Valid flags, which may be logically OR'd with PAM_SILENT, are:

PAM_SILENT Do not emit any messages.
PAM_ESTABLISH_CRED Initialize the credentials for the user.
PAM_DELETE CRED Delete the credential s associated with the authentication service.

PAM_REINITIALIZE CRED Reinitialize the user credentials.
PAM_REFRESH_CRED Extend the lifetime of the user credentials.

The way the auth stack is navigated in order to evaluate the pam set cr ed() function call, independent
of the pam sm setcred() return codes, is exactly the same way that it was navigated when
evaluating the pam aut hent i cat e() library cal. Typicaly, if astack entry wasignored in evaluating
pam aut hent i cat e(), it will be ignored when libpam evaluates the pam set cr ed() function call.
Otherwise, the return codes from each module specific pam sm set cr ed() call aretreated asrequired.

3.2.2.2. RETURN VALUES
PAM_CRED_UNAVAIL This module cannot retrieve the user's credentials.
PAM_CRED_EXPIRED The user's credentials have expired.
PAM_CRED_ERR This module was unable to set the credentials of the user.
PAM_SUCCESS The user credential was successfully set.
PAM_USER_UNKNOWN he user is not known to this authentication module.

These, non-PAM_SUCCESS return values will typically lead to the credential stack failing. Thefirst such
error will dominate in the return value of pam set cr ed().

3.3. Account management

To be correctly initialized, PAM_SM ACCOUNT must be #defined prior to including <security/
pam nodul es. h>. Thiswill ensure that the prototypes for static modules are properly declared.

15

What is expected of amodule

3.3.1. Service function for account management
#define PAM_SM_ACCOUNT
#include <security/pam_modules.h>
int pamsmacct_ngnt (panh, flags, argc, argv);
pam handl e_t *panh;
int flags;

int argc;
const char **argv;

3.3.1.1. DESCRIPTION

The pam sm acct _ngnt function is the service modul€e's implementation of the pam_acct_ mgmt(3)
interface.

This function performs the task of establishing whether the user is permitted to gain access at this time.
It should be understood that the user has previously been validated by an authentication module. This
function checksfor other things. Such things might be: thetime of day or the date, the terminal line, remote
hostname, etc. Thisfunction may also determine things like the expiration on passwords, and respond that
the user change it before continuing.

Vdlid flags, which may be logically OR'd with PAM_SILENT, are:
PAM_SILENT Do not emit any messages.

PAM_DISALLOW_NULL AUTHTQOReturn PAM_AUTH_ERR if the database of authentication tokens
for this authentication mechanism has a NULL entry for the user.

3.3.1.2. RETURN VALUES
PAM_ACCT_EXPIRED User account has expired.
PAM_AUTH_ERR Authentication failure.

PAM_NEW_AUTHTOK_REQDhe user's authentication token has expired. Before calling this function
again the application will arrange for a new one to be given. This will
likely result inacall to pam_sm chaut ht ok() .

PAM_PERM_DENIED Permission denied.
PAM_SUCCESS The authentication token was successfully updated.

PAM_USER _UNKNOWN User unknown to password service.

3.4. Session management

To be correctly initialized, PAM_SM SESSI ON must be #define'd prior to including <security/
pam nodul es. h>. Thiswill ensure that the prototypes for static modules are properly declared.

3.4.1. Service function to start session management

#define PAM_SM_SESSION

16

What is expected of amodule

#include <security/pam_modules.h>
i nt pam sm open_sessi on(panh, flags, argc, argv);

pam handl e_t *pamnh;
int flags;
int argc;
const char **argv;

3.4.1.1. DESCRIPTION

The pam sm open_session function is the service module's implementation of the
pam_open_session(3) interface.

Thisfunction is called to commence a session. The only valid valuefor f | ags iszero or:

PAM_SILENT Do not emit any messages.

3.4.1.2. RETURN VALUES

3.4.2.

PAM_SESSION_ERR Cannot make/remove an entry for the specified session.

PAM_SUCCESS The session was successfully started.

Service function to terminate session management
#define PAM_SM_SESSION

#include <security/pam_modules.h>

i nt pam sm cl ose_sessi on(pamh, flags, argc, argv);

pam _handl e_t *panmnh;

int flags;

int argc;
const char **argv;

3.4.2.1. DESCRIPTION

The pam sm cl ose_session function is the service module's implementation of the
pam_close session(3) interface.

Thisfunction is called to terminate a session. The only valid value for f | ags iszero or:

PAM_SILENT Do not emit any messages.

3.4.2.2. RETURN VALUES

PAM_SESSION_ERR Cannot make/remove an entry for the specified session.

PAM_SUCCESS The session was successfully terminated.

3.5. Authentication token management

To be correctly initialized, PAM_SM PASSWORD must be #define'd prior to including <security/
pam nodul es. h>. Thiswill ensure that the prototypes for static modules are properly declared.

17

What is expected of amodule

3.5.1. Service function to alter authentication token

#define PAM_SM_PASSWORD
#include <security/pam_modules.h>

i nt pam sm chaut ht ok(panh,
pam handl e_t *panh;

int flags;

int argc;
const char **argv;

3.5.1.1. DESCRIPTION

The pam sm chaut ht ok function
interface.

flags, argc, argv);

is the service module's implementation of the pam_chauthtok(3)

This function is used to (re-)set the authentication token of the user.

Valid flags, which may be logically OR'd with PAM_SILENT, are:

PAM_SILENT

Do not emit any messages.

PAM_CHANGE_EXPIRED_AUTHTOMKs argument indicates to the modul e that the user's authentication

PAM_PRELIM_CHECK

PAM_UPDATE_AUTHTOK

token (password) should only be changed if it has expired. This
flag is optional and must be combined with one of the following
two flags. Note, however, the following two options are mutually
exclusive.

This indicates that the modules are being probed as to their
ready status for atering the user's authentication token. If the
module requires access to another system over some network it
should attempt to verify it can connect to this system on receiving
this flag. If a module cannot establish it is ready to update the
user's authentication token it should return PAM_TRY_AGAIN, this
information will be passed back to the application.

If the control value sufficient is used in the password stack, the
PAM_PRELIM_CHECK section of the modules following that
control value is not always executed.

This informs the module that this is the call it should change
the authorization tokens. If the flag is logically OR'd with
PAM_CHANGE_EXPIRED_AUTHTOK, thetokenisonly changed
if it has actually expired.

The PAM library calls this function twice in succession. The first time with PAM_PRELIM_CHECK and
then, if the module does not return PAM_TRY_AGAIN, subsequently with PAM_UPDATE_AUTHTOK. It
isonly on the second call that the authorization token is (possibly) changed.

3.5.1.2. RETURN VALUES

PAM_AUTHTOK_ERR

The module was unabl e to obtain the new authentication token.

PAM_AUTHTOK_RECOVERY_ERR he module was unable to obtain the old authentication token.

18

What is expected of amodule

PAM_AUTHTOK_LOCK_BUSY Cannot change the authentication token sinceit is currently locked.

PAM_AUTHTOK_DISABLE_AGIN@®uthentication token aging has been disabled.

PAM_PERM_DENIED Permission denied.

PAM_TRY_AGAIN Preliminary check was unsuccessful. Signals an immediate return
to the application is desired.

PAM_SUCCESS The authentication token was successfully updated.

PAM_USER_UNKNOWN User unknown to password service.

19

Chapter 4. Generic optional arguments

Here we list the generic arguments that all modules can expect to be passed. They are not mandatory, and
their absence should be accepted without comment by the module.

debug Use the pam_syslog(3) call to log debugging information to the system log files.

use first_pass The module should not prompt the user for a password. Instead, it should
obtain the previoudly typed password (by a call to pam get _i tem() for the
PAM AUTHTCK item), and use that. If that doesn't work, then the user will not be
authenticated. (This option isintended for auth and passwd modules only).

20

Chapter 5. Programming notes

Here we collect some pointers for the module writer to bear in mind when writing/developing a Linux-
PAM compatible module.

5.1. Security issues for module creation

5.1.1.

5.1.2.

5.1.3.

Sufficient resources

Care should be taken to ensure that the proper execution of a module is not compromised by a lack of
system resources. If amodule is unable to open sufficient filesto perform itstask, it should fail gracefully,
or request additional resources. Specifically, the quantities manipulated by the setrlimit(2) family of
commands should be taken into consideration.

Who's who?

Generally, the module may wish to establish the identity of the user requesting a service. This may not be
the same asthe usernamereturned by pam get _user () . Indeed, that isonly going to be the name of the
user under whoseidentity the servicewill begiven. Thisisnot necessarily the user that requeststhe service.

In other words, user X runs a program that is setuid-Y, it grants the user to have the permissions of Z.
A specific example of this sort of service request is the su program: user joe executes su to become the
user jane. In this situation X=joe, Y=root and Z=jane. Clearly, it is important that the module does not
confuse these different users and grant an inappropriate level of privilege.

The following is the convention to be adhered to when juggling user-identities.

» X, theidentity of the user invoking the servicerequest. Thisisthe user identifier; returned by thefunction
getuid(2).

* Y, the privileged identity of the application used to grant the requested service. Thisis the effective user
identifier; returned by the function geteuid(2).

e Z, the user under whose identity the service will be granted. This is the username returned by
pam get user () and also stored in the Linux-PAM item, PAM_USER.

 Linux-PAM hasaplace for an additional user identity that amodule may care to make use of. Thisisthe
PAM_RUSER item. Generally, network sensitive modules/applications may wish to set/read this item
to establish the identity of the user requesting a service from a remote location.

Note, if a module wishes to modify the identity of either the uid or euid of the running process, it should
take care to restore the original values prior to returning control to the Linux-PAM library.

Using the conversation function

Prior to calling the conversation function, the module should reset the contents of the pointer that will
return the applications response. Thisis a good idea since the application may fail to fill the pointer and
the module should be in a position to notice!

The module should be prepared for a failure from the conversation. The generic error would be
PAM_CONV_ERR, but anything other than PAM_SUCCESS should be treated as indicating failure.

21

Programming notes

5.1.4. Authentication tokens

To ensure that the authentication tokens are not left lying around the items, PAM_AUTHTOK
and PAM_OLDAUTHTOK, are not available to the application: they are defined in <security/
pam nodul es. h>. Thisis ostensibly for security reasons, but a maliciously programmed application
will always have access to all memory of the process, so it is only superficially enforced. As a genera
rule the module should overwrite authentication tokens as soon as they are no longer needed. Especially
beforef r ee() 'ing them. The Linux-PAM library isrequired to do thiswhen either of these authentication
token items are (re)set.

Not to dwell too little on this concern; should the module store the authentication tokens either as
(automatic) function variables or using pam [gs] et _dat a() the associated memory should be over-
written explicitly before it is released. In the case of the latter storage mechanism, the associated
cl eanup() function should explicitly overwritethe* dat a beforef r ee() 'ing it: for example,

/*

* An exanpl e cleanup() function for releasing menory that was used to
* store a password.

*/

i nt cl eanup(pam handl e_t *panh, void *data, int error_status)

{

char *xx;

if ((xx = data)) {
whil e (*xx)
*xx++ = '"\0';
free(data);

}
return PAM _SUCCESS;

5.2. Use of syslog(3)

Only rarely should error information be directed to the user. Usually, this is to be limited to “sorry
you cannot login now” type messages. Information concerning errors in the configuration file, / et c/
pam conf , or dueto some system failure encountered by the module, should be written to syslog(3) with
facility-type LOG_AUTHPRIV.

With a few exceptions, the level of logging is, at the discretion of the module developer. Here is the
recommended usage of different logging levels:

» Asagenera rule, errors encountered by a module should be logged at the LOG_ERR level. However,
information regarding an unrecognized argument, passed to a module from an entry in the / et ¢/
pam conf file isrequired to belogged at the LOG_ERR level.

» Debugging information, as activated by the debug argument to the module in / et ¢/ pam conf,
should be logged at the LOG_DEBUG level.

« If amodule discovers that its personal configuration file or some system file it uses for information is
corrupted or somehow unusable, it should indicate this by logging messages at level, LOG_ALERT.

22

Programming notes

 Shortages of system resources, such as a failure to manipulate afile or mal | oc() failures should be
logged at level LOG_CRIT.

» Authentication failures, associated with an incorrectly typed password should be logged at level,
LOG_NOTICE.

5.3. Modules that require system libraries

Writing a module is much like writing an application. Y ou have to provide the "conventional hooks" for
it to work correctly, like pam sm aut henti cat e() etc., which would correspond to the mai n()
function in anormal function.

Typically, the author may want to link against some standard system libraries. As when one compiles a
normal program, this can be donefor modulestoo: you simply appendthe- | XXX argumentsfor thedesired
librarieswhen you create the shared modul e object. To make sureamoduleislinked to the libwhatever .so
library whenitisdl open() ed, try:

% gcc -shared -o pam nodul e. so pam nodul e. o -1 what ever

23

Chapter 6. An example module

At some point, we may include afully commented example of amodule in this document. For now, please
look at the modules directory of the Linux-PAM sources.

24

Chapter 7. See also

e TheLinux-PAM System Administrators Guide.

e TheLinux-PAM Application Developers Guide.

« The V. Samar and R. Schemers (SunSoft), “UNIFIED LOGIN WITH PLUGGABLE
AUTHENTICATION MODULES", Open Software Foundation Reguest For Comments 86.0, October

1995.

25

Chapter 8. Author/acknowledgments

This document was written by Andrew G. Morgan (morgan@kernel.org) with many contributions from
Chris Adams, Peter Allgeyer, Tim Baverstock, Tim Berger, Craig S. Bell, Derrick J. Brashear, Ben
Buxton, Seth Chaiklin, Oliver Crow, Chris Dent, Marc Ewing, Cristian Gafton, Emmanuel Galanos,
Brad M. Garcia, Eric Hester, Roger Hu, Eric Jacksch, Michael K. Johnson, David Kinchlea, Olaf Kirch,
Marcin Korzonek, Thorsten Kukuk, Stephen Langasek, Nicolai Langfeldt, Elliot Lee, Luke Kenneth
Casson Leighton, Al Longyear, Ingo Luetkebohle, Marek Michalkiewicz, Robert Milkowski, Aleph One,
Martin Pool, Sean Reifschneider, Jan Rekorgjski, Erik Troan, Theodore Tso, Jeff Uphoff, Myles Uyema,
Savochkin Andrey Vladimirovich, Ronald Wahl, David Wood, John Wilmes, Joseph S. D. Yao and Alex
O. Yuriev.

Thanks are al'so due to Sun Microsystems, especially to Vipin Samar and Charlie Lai for their advice.
At an early stage in the development of Linux-PAM, Sun graciously made the documentation for their
implementation of PAM available. This act greatly accelerated the development of Linux-PAM.

26

Chapter 9. Copyright information for
this document

Copyright (c) 2006 Thorsten Kukuk <kukuk@ hkukuk.de>
Copyright (c) 1996-2002 Andrew G Morgan <nor gan@ernel . or g>

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code nust retain the above copyri ght
notice, and the entire pernission notice inits entirety,
i ncluding the disclainmer of warranties.

2. Redistributions in binary form nust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainer in the
docunentati on and/or other materials provided with the distribution.

3. The nane of the author nmay not be used to endorse or pronote
products derived fromthis software wi thout specific prior
witten perni ssion.

Alternatively, this product may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GNU GPL are required instead of the above restrictions. (This clause
is necessary due to a potential bad interaction between the GNU GPL and the restrictions contained in a
BSD-style copyright.)

TH S SOFTWARE |S PROVIDED ""AS | S'' AND ANY EXPRESS OR | MPLI ED
WARRANTI ES, | NCLUDI NG BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPOSE ARE DI SCLAI MED.
N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR ANY DI RECT, | NDI RECT,

| NCl DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG,
BUT NOT LI M TED TO, PROCUREMENT OF SUBSTI TUTE GOCDS OR SERVI CES; LCOSS
OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) HONEVER CAUSED AND
ON ANY THEORY OF LI ABILITY, WHETHER | N CONTRACT, STRICT LIABILITY, OR
TORT (1 NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG I N ANY WAY OUT COF THE
USE OF TH S SOFTWARE, EVEN | F ADVI SED OF THE POSSI BI LI TY OF SUCH

27

